Abstract
The simulation of human thinking is one of the long term goals of the Artificial Intelligence community. In recent years, the adoption of Semantic Web technologies and the ongoing sharing of Linked Data has generated one of the world’s largest knowledge bases, bringing us closer to this dream than ever. Nevertheless, while associations in the human memory have different strengths, such explicit association strengths (edge weights) are missing in Linked Data. Hence, finding good heuristics which can estimate human-like association strengths for Linked Data facts (triples) is of major interest to us. In order to evaluate existing approaches with respect to human-like association strengths, we need a collection of such explicit edge weights for Linked Data triples.
In this chapter we first provide an overview of existing approaches to rate Linked Data triples which could be valuable candidates for good heuristics. We then present a web-game prototype which can help with the collection of a ground truth of edge weights for triples. We explain the game’s concept, summarize Linked Data related implementation aspects, and include a detailed evaluation of the game.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American 284(5), 34–43 (2001)
Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)
van Elst, L., Abecker, A.: Ontologies for information management: balancing formality, stability, and sharing scope. Expert Systems with Applications 23(4), 357–366 (2002)
Crestani, F.: Application of Spreading Activation Techniques in Information Retrieval. Artificial Intelligence Review 11(6), 453–482 (1997)
Schumacher, K., Sintek, M., Sauermann, L.: Combining Fact and Document Retrieval with Spreading Activation for Semantic Desktop Search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 569–583. Springer, Heidelberg (2008)
Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)
Hees, J., Roth-Berghofer, T., Dengel, A.: Linked Data Games: Simulating Human Association with Linked Data. In: LWA 2010, Kassel, Germany (2010)
Hees, J., Roth-Berghofer, T., Biedert, R., Adrian, B., Dengel, A.: BetterRelations: Using a Game to Rate Linked Data Triples. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 134–138. Springer, Heidelberg (2011)
von Ahn, L., Dabbish, L.: Designing games with a purpose. Communications of the ACM 51(8), 58–67 (2008)
Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in Databases. In: Proc. of the 13th International Conference on Very Large Data Bases, pp. 564–575. VLDB Endowment (2004)
Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)
Harth, A., Kinsella, S., Decker, S.: Using Naming Authority to Rank Data and Ontologies for Web Search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292. Springer, Heidelberg (2009)
Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical Link Analysis for Ranking Web Data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 225–239. Springer, Heidelberg (2010)
Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the Open Linked Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg (2007)
Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking Semantic Web Data by Tensor Decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009)
Anyanwu, K., Maduko, A., Sheth, A.P.: SemRank: Ranking Complex Relationship Search Results on the Semantic Web. In: Proc. of the WWW 2005, Chiba, Japan (2005)
Ell, B., Vrandečić, D., Simperl, E.: Labels in the Web of Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 162–176. Springer, Heidelberg (2011)
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics 32(1), 13–47 (2006)
Strube, M., Ponzetto, S.P.: WikiRelate! Computing Semantic Relatedness Using Wikipedia. In: Proc. of the AAAI 2006, pp. 1419–1424. AAAI Press, Boston (2006)
Cilibrasi, R.L., Vitányi, P.M.B.: The Google Similarity Distance. IEEE Trans. Knowledge and Data Engineering 19(3), 370–383 (2007)
Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag Relatedness in Social Bookmarking Systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)
Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasça, M., Soroa, A.: A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches. In: Proc. of the NAACL 2009, pp. 19–27. Association for Computational Linguistics, Boulder (2009)
Mirizzi, R., Ragone, A., Di Noia, T., Di Sciascio, E.: Ranking the Linked Data: The Case of DBpedia. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 337–354. Springer, Heidelberg (2010)
Waitelonis, J., Sack, H.: Towards Exploratory Video Search Using Linked Data. In: Proc. of the IEEE International Symposium on Multimedia (ISM) 2009, pp. 540–545. IEEE, San Diego (2009)
Hacker, S., von Ahn, L.: Matchin: Eliciting User Preferences with an Online Game. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1207–1216. ACM, Boston (2009)
Siorpaes, K., Hepp, M.: OntoGame: Towards Overcoming the Incentive Bottleneck in Ontology Building. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1222–1232. Springer, Heidelberg (2007)
Kny, E., Kölle, S., Töpper, G., Wittmers, E.: WhoKnows? (October 2010)
Singh, P.: The Open Mind Common Sense Project. KurzweilAI.net (January 2002)
Herbrich, R., Minka, T., Graepel, T.: TrueSkill(TM): A Bayesian Skill Rating System. In: Schölkopf, B., Platt, J., Hoffmann, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 569–576. MIT Press, Cambridge (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hees, J., Roth-Berghofer, T., Biedert, R., Adrian, B., Dengel, A. (2012). BetterRelations: Collecting Association Strengths for Linked Data Triples with a Game. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 7538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34213-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-34213-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34212-7
Online ISBN: 978-3-642-34213-4
eBook Packages: Computer ScienceComputer Science (R0)