Abstract
Cultural heritage and archaeological sites are exposed to the risk of fire and early warning is the only way to avoid losses and damages. The use of terrestrial systems, typically based on video cameras, is currently the most promising solution for advanced automatic wildfire surveillance and monitoring. Video cameras are sensitive in visible spectra and can be used either for flame or smoke detection. This paper presents and compares three video-based flame detection techniques, which were developed within the FIRESENSE EU research project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Advanced Very High Resolution Radiometer – AVHRR, http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html (accessed May 20, 2010)
Bloch, I.: Information Combination Operators for Data Fusion: A Comparative review with Classification. Systems, Man and Cybernetics 26(1), 52–67 (1996)
Borges, P.V.K., Mayer, J., Izquierdo, E.: Efficient Visual Fire Detection Applied For Video Retrieval. In: 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29 (2008)
Chen, J., He, Y., Wang, J.: Multi-Feature Fusion Based Fast Video Flame Detection. Building and Environment 45, 1113–1122 (2010)
FIRESENSE Database (2011), http://www.firesense.eu/
Fleming, J., Robertson, R.G.: Fire Management Tech Tips: The Osborne Fire Finder. T. R. 1311-SDTDC, USDA Forest Service (2003)
Grammalidis, N., Cetin, E., Dimitropoulos, K., Tsalakanidou, F., Kose, K., Gunay, O., Gouverneur, B., Torri, D., Kuruoglu, E., Tozzi, S., Benazza, A., Chaabane, F., Kosucu, B., Ersoy, C.: A Multi-sensor Network for the Protection of Cultural Heritage. In: 19th European Signal Processing Conference (EUSIPCO 2011), Special Session on Signal Processing for Disaster Management and Prevention, Barcelona, Spain, August 29-September 2 (2011)
Habiboglu, H., Gunay, O., Cetin, A.E.: Covariance matrix-based fire and flame detection method in video. Machine Vision and Applications, 1–11 (September 2011), doi:10.1007/s00138-011-0369-1
Kang, S., Paik, J., Koschan, A., Abidi, B., Abidi, M.A.: Real-Time video tracking using PTZ cameras. In: Proc. of SPIE 6th International Conference on Quality Control by Artificial Vision, vol. 5132, pp. 103–111. Gatlinburg, TN (2003)
Modis Web Page, http://modis.gsfc.nasa.gov
Töreyin, B.U., Dedeoglu, Y., Güdükbay, U., Çetin, A.E.: Computer vision based method for real-time fire and flame detection. Pattern Recognition Letters 27(1) (2006)
Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)
Zhang, D., Han, S., Zhao, J., Zhang, Z., Qu, C., Ke, Y., Chen, X.: Image Based Forest Fire Detection Using Dynamic Characteristics With Artificial Neural Networks. In: International Joint Conference on Artificial Intelligence, Pasadena, California, USA (2009)
Dimitropoulos, K., Tsalakanidou, F., Grammalidis, N.: Flame Detection For Video-Based Early Fire Warning Systems And 3D Visualization of Fire Propagation. In: 13th IASTED International Conference on Computer Graphics and Imaging (CGIM 2012), Crete, Greece (2012)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimitropoulos, K. et al. (2012). Flame Detection for Video-Based Early Fire Warning for the Protection of Cultural Heritage. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds) Progress in Cultural Heritage Preservation. EuroMed 2012. Lecture Notes in Computer Science, vol 7616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34234-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-34234-9_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34233-2
Online ISBN: 978-3-642-34234-9
eBook Packages: Computer ScienceComputer Science (R0)