Skip to main content

Similar Region Contrast Based Salient Object Detection

  • Conference paper
Computational Visual Media (CVM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7633))

Included in the following conference series:

  • 2037 Accesses

Abstract

Detection of visual saliency is an important issue in many computer vision tasks. In this paper, we propose a novel regional contrast based saliency detection method, generating a saliency map that enables high contrast between the foreground salient object and background. Our method mainly integrates four principles, which are based on psychological evidences, visual research and general observation. In order to suppress the homogeneous regions, and let the novel regions stand out, our method computes a region’s saliency value based on the region’s N closest regions defined in the CIE L*a*b color space. We compared our method with the state-of-the-art saliency detection methods using a standard publicly available database. Experimental results show that our method has better performance on yielding higher precision and recall rates. In the application of image editing, we demonstrate that using our saliency map as energy map can achieve more appealing retargeting results with less distortions in the important regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Transactions on Graphics 26(3), 2462–2470 (2007)

    Article  Google Scholar 

  2. Han, J., Ngan, K.N., Li, M.J., Zhang, H.J.: Unsupervised extraction of visual attention objects in color images. IEEE Transactions on Circuits and Systems for Video Technology 16, 141–145 (2006)

    Article  Google Scholar 

  3. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: IEEE CVPR, pp. 37–44 (2004)

    Google Scholar 

  4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  5. Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nature Neuroscience 2(1), 9–10 (1999)

    Article  Google Scholar 

  6. Treisman, A., Gelade, G.: Predicting the visual world: silence is golden. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  7. Wolfe, J.M.: A revised model of visual search. Psychonomic Bulletin & Review 1(2), 202–238 (1994)

    Article  Google Scholar 

  8. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV, pp. 2106–2113 (2009)

    Google Scholar 

  9. Rother, Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmentation. IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  10. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X.L., Hu, S.M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)

    Google Scholar 

  11. Gorisse, D., Cord, M., Precioso, F.: Locality-Sensitive Hashing for Chi2 Distance. IEEE TPAMI 34(2), 402–409 (2012)

    Article  Google Scholar 

  12. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. IJCV 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  13. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  14. Hou, X.D., Zhang, L.Q.: Saliency Detection: A Spectral Residual Approach. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  15. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)

    Google Scholar 

  16. Achanta, R., Estrasda, F., Wils, P., Susstrunk, S.: Salient Region Detection and Segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: CVPR, pp. 2376–2383 (2010)

    Google Scholar 

  18. Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: ACM MM, pp. 374–381 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, Q., Qi, C. (2012). Similar Region Contrast Based Salient Object Detection. In: Hu, SM., Martin, R.R. (eds) Computational Visual Media. CVM 2012. Lecture Notes in Computer Science, vol 7633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34263-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34263-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34262-2

  • Online ISBN: 978-3-642-34263-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics