Skip to main content

Curve Skeleton Extraction by Graph Contraction

  • Conference paper
Computational Visual Media (CVM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7633))

Included in the following conference series:

Abstract

In this paper, we propose a practical algorithm for extracting curve skeletons from a 3D shape represented by a triangular mesh. We first construct an initial skeleton graph by copying the connectivity and geometry information from the input mesh. We then perform iterative skeletonization over the nodes of the skeleton graph using coupled processes of graph contraction and surface clustering. In the contraction step, the skeleton graph is simplified and regularized with surface clustering: mesh vertices are clustered, while the positions of nodes in the skeleton graph are updated at the same time. Eventually, the skeleton graph is automatically simplified to an approximately-centered curve skeleton. Our algorithm naturally produces a skeleton-to-surface mapping, making the output skeletons directly applicable to skinning deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 13(3), 530–548 (2007) 1, 2

    Article  Google Scholar 

  2. Amenta, N., Choi, S.: Voronoi methods for 3d medial axis approximation. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations. Computational Imaging and Vision, vol. 37, pp. 223–239. Springer, Netherlands (2008) 1

    Chapter  Google Scholar 

  3. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: ACM Symposium on Solid Modeling and Applications, pp. 249–266 (2001) 1, 2, 4

    Google Scholar 

  4. Valette, S., Chassery, J.-M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum 23(3), 381–389 (2004) 1, 2, 3, 4

    Article  Google Scholar 

  5. Ogniewicz, R., Ilg, M.: Voronoi skeletons: Theory and applications. In: Proc. Computer Vision and Pattern Recognition, pp. 63–69 (1992) 1, 2

    Google Scholar 

  6. Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Transactions on Graphics 27, 44:1–44:10 (2008) 2

    Article  Google Scholar 

  7. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994) 2

    Article  MATH  Google Scholar 

  8. Ma, W.-C., Wu, F.-C., Ouhyoung, M.: Skeleton extraction of 3d objects with radial basis functions. In: Proc. Shape Modeling International, pp. 207–214 (2003) 2

    Google Scholar 

  9. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3d objects. The Visual Computer 21(11), 945–955 (2005) 2

    Article  Google Scholar 

  10. Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2257–2274 (2009) 2

    Article  Google Scholar 

  11. Li, X., Woon, T.W., Tan, T.S., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Symposium on Interactive 3D Graphics and Games, pp. 35–42 (2001) 2

    Google Scholar 

  12. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 954–961 (2003) 2

    Article  Google Scholar 

  13. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Eurographics Symposium on Geometry Processing, pp. 143–152 (2006) 2

    Google Scholar 

  14. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian-based contraction. In: Proc. Shape Modeling International, pp. 187–197 (2010) 2

    Google Scholar 

  15. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics 28, 71:1–71:9 (2009) 2, 7

    Article  Google Scholar 

  16. Lien, J.-M., Keyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: ACM Symposium on Solid and Physical Modeling, pp. 219–228 (2006) 2

    Google Scholar 

  17. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Skinning with dual quaternions. In: Proc. of Symposium on Interactive 3D Graphics and Games, pp. 39–46 (2007) 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, W., Xu, K., Cheng, ZQ., Martin, R.R., Dang, G. (2012). Curve Skeleton Extraction by Graph Contraction. In: Hu, SM., Martin, R.R. (eds) Computational Visual Media. CVM 2012. Lecture Notes in Computer Science, vol 7633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34263-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34263-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34262-2

  • Online ISBN: 978-3-642-34263-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics