Skip to main content

Modeling Structure and Dynamics of Selective Attention

  • Conference paper
Biologically Inspired Cognitive Architectures 2012

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 196))

  • 1397 Accesses

Abstract

We present a cognitive architecture that includes perception, memory, attention, decision making, and action. The model is formulated in terms of an abstract dynamics for the activations of features, their binding into object entities, semantic categorization as well as related memories and appropriate reactions. The dynamical variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. The model is applied to the problem of disambiguating a number of theories for negative priming, an effect that is studied in connection to selective attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction 12(4), 439–462 (1997)

    Article  Google Scholar 

  2. Baddeley, A.: Working memory. Cr. Acad. Sci. III-Vie. 321(2-3), 167–173 (1998)

    Article  Google Scholar 

  3. Bookheimer, S.: Functional MRI of Language: New Approaches to Understanding the Cortical Organization of Semantic Processing. Annu. Rev. Neurosci. 25(1), 151–188 (2002)

    Article  Google Scholar 

  4. Cowan, N.: Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 104(2), 163–191 (1988)

    Article  Google Scholar 

  5. Dalrymple-Alford, E.C., Budayr, B.: Examination of some aspects of the Stroop color-word test. Percept. Motor Skills 23(3), 1211–1214 (1966)

    Article  Google Scholar 

  6. DeSchepper, B., Treisman, A.: Visual memory for novel shapes: Implicit coding without attention. J. Exp. Psychol. Learn. 22(1), 27–47 (1996)

    Article  Google Scholar 

  7. Devlin, J.T., Russell, R.P., Davis, M.H., Price, C.J., Moss, H.E., Fadili, M.J., Tyler, L.K.: Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia 40(1), 54–75 (2002)

    Article  Google Scholar 

  8. Fox, E.: Negative priming from ignored distractors in visual selection: A review. Psychon. B. Rev. 2(2), 145–173 (1995)

    Article  Google Scholar 

  9. Frings, C., Wühr, P.: Prime-display offset modulates negative priming only for easy-selection tasks. Mem. Cognition 35, 504–513 (2007)

    Article  Google Scholar 

  10. Grison, S., Strayer, D.L.: Negative priming and perceptual fluency: More than what meets the eye. Percept. Psychophys 63(6), 1063–1071 (2001)

    Article  Google Scholar 

  11. Hommel, B.: Event files: feature binding in and across perception and action. Trends Cong. Sci. 8(11), 494–500 (2004)

    Article  Google Scholar 

  12. Ihrke, M., Behrendt, J., Schrobsdorff, H., Herrmann, J.M., Hasselhorn, M.: Response-retrieval and negative priming: Encoding and Retrieval Specific Effects.. Exp. Psychol. 58(2), 154–161 (2011)

    Article  Google Scholar 

  13. Johnson, M.K.: Memory systems: A cognitive construct for analysis and synthesis. In: Science of Memory: Concepts, pp. 353–357. Oxford University Press, New York (2007)

    Google Scholar 

  14. Kabisch, B.: Negatives Priming und Schizophrenie - Formulierung und Empirische Untersuchung eines Neuen Theoretischen Ansatzes. PhD thesis, Friedrich-Schiller-Universität, Jena, Germany (2003)

    Google Scholar 

  15. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence. Artif. Intell. 33, 1–64 (1987)

    Article  Google Scholar 

  16. Mayr, S., Buchner, A.: Negative priming as a memory phenomenon: A review of 20 years of negative priming research. Z. Psychol. 215(1), 35–51 (2007)

    Article  Google Scholar 

  17. Milliken, B., Joordens, S., Merikle, P.M., Seiffert, A.E.: Selective attention: A reevaluation of the implications of negative priming. Psychol. Rev. 105(2), 203–229 (1998)

    Article  Google Scholar 

  18. Milliken, B., Tipper, S.P., Weaver, B.: Negative priming in a spatial localization task: Feature mismatching and distractor inhibition. J. Exp. Psychol. Human 20(3), 624–646 (1994)

    Article  Google Scholar 

  19. Neill, W.T.: Inhibitory and facilitatory processes in selective attention. J. Exp. Psychol. Human 3, 444–450 (1977)

    Article  Google Scholar 

  20. Neill, W.T., Lissner, L.S., Beck, J.L.: Negative priming in same−different matching: Further evidence for a central locus of inhibition. Percept. Psychophys. 48(4), 398–400 (1990)

    Article  Google Scholar 

  21. Neill, W.T., Valdes, L.A.: Persistence of negative priming: Steady state or decay? J. Exp. Psychol. Learn. 18(3), 565–576 (1992)

    Article  Google Scholar 

  22. Rothermund, K., Wentura, D., De Houwer, J.: Retrieval of incidental stimulus-response associations as a source of negative priming. J. Exp. Psychol. Learn. 31(3), 482–495 (2005)

    Article  Google Scholar 

  23. Schrobsdorff, H., Herrmann, J.M., Geisel, T.: A feature-binding model with localized excitations. Neurocomputing 70(10-20), 1706–1710 (2007)

    Article  Google Scholar 

  24. Schrobsdorff, H., Ihrke, M., Herrmann, J.M.: The source code containing several paradigm examples is available through the project web site (2013)

    Google Scholar 

  25. Schrobsdorff, H., Ihrke, M., Kabisch, B., Behrendt, J., Hasselhorn, M., Herrmann, J.M.: A Computational Approach to Negative Priming. Conn. Sci. 19(3), 203–221 (2007)

    Article  Google Scholar 

  26. Tipper, S.P., Cranston, M.: Selective attention and priming: inhibitory and facilitatory effects of ignored primes. Q. J. Exp. Psychol. 37(4), 591–611 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hecke Schrobsdorff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schrobsdorff, H., Ihrke, M., Herrmann, J.M. (2013). Modeling Structure and Dynamics of Selective Attention. In: Chella, A., Pirrone, R., Sorbello, R., Jóhannsdóttir, K. (eds) Biologically Inspired Cognitive Architectures 2012. Advances in Intelligent Systems and Computing, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34274-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34274-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34273-8

  • Online ISBN: 978-3-642-34274-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics