Towards a Formal Verification Methodology for
Collective Robotic Systems™

Edmond Gjondrekaj', Michele Loreti!, Rosario Pugliese', Francesco Tiezzi’,
Carlo Pinciroli?, Manuele Brambilla®, Mauro Birattari®, and Marco Dorigo3

! Dipartimento di Sistemi e Informatica, Universita degli Studi di Firenze, Italy
2 IMT, Institute for Advanced Studies Lucca, Italy
3 IRIDIA, CoDE, Université Libre de Bruxelles, Belgium

Abstract. We present a novel formal verification approach for collective robotic
systems that is based on the use of the formal language Kram and related analysis
tools. While existing approaches focus on either micro- or macroscopic views of
a system, we model aspects of both the robot hardware and behaviour, as well as
relevant aspects of the environment. We illustrate our approach through a robotics
scenario, in which three robots cooperate in a decentralized fashion to transport
an object to a goal area. We first model the scenario in Kram. Subsequently,
we introduce random aspects to the model by stochastically specifying actions
execution time. Unlike other approaches, the specification thus obtained enables
quantitative analysis of crucial properties of the system. We validate our approach
by comparing the results with those obtained through physics-based simulations.

1 Introduction

Collective robotic systems are systems in which a group of autonomous robots coop-
erates to tackle a task. By taking advantage of the absence of a centralized controller,
the use of local communication and sensing, and the lack of global knowledge, these
systems have the potential to display properties such as robustness and parallelism.
Collective robotic systems are difficult to design and analyse because the collective
behaviour of the system is the result of the non-linear interaction of the individual robots
with each other and with the environment. The realisation of these systems currently
relies on the ingenuity and expertise of the designer due to the lack of sound engineer-
ing approaches and accountable engineering practices. The typical design approach in-
volves several loops of development, testing and modification of the behaviour of each
robot until the desired collective behaviour is obtained. This iterative process, often
performed first using computer simulations and eventually on real robots, is in gen-
eral expensive, time consuming, and cannot provide guarantees of system correctness.
Indeed, experimentation with real robots is very costly and time consuming. Physics-
based simulation, that attempts to realistically model the environment, the robots and
their interactions, is faster and more reliable than experimentation, but requires an ex-
haustive scan of the design parameter space to reach any conclusion (see e.g. [18]). Be-
sides, experimentation and simulation can only validate a small subset of the possible

* This work has been partially sponsored by the EU project ASCENS, 257414.

system scenarios and are often impractical to exhaustively study a collective behaviour.
In other words, these approaches cannot ensure a complete coverage of the critical as-
pects of the system nor the absence of residual anomalies.

A major open issue in the design and development of collective robotic systems is
thus to guarantee the correctness of the collective behaviour of a system composed of
autonomous components. Formal verification techniques, such as model checking, can
complement traditional approaches by guaranteing that certain system properties hold.

In this paper, we introduce a formal verification approach for the design of collec-
tive robotic systems that lays down the basis of a principled development methodology
for such systems. Our approach consists of two phases. In the first phase, we model the
robot behaviour and the environment with the formal language Kram [7]. Kram is a
tuple-space-based coordination language that allows one to define an accurate model
of a distributed system using a small set of primitives. Unlike existing approaches that
mainly focus on micro- or macroscopic aspects of the system, Kram permits to capture
both hardware aspects of the robots and their behaviour. In addition, KLam can suitably
model relevant environmental aspects. In the second phase, we enrich the model with
stochastic aspects, using Kramm’s stochastic extension StoKram [8], and formalise the
desired properties using MoSL [8]. MoSL is a stochastic logic that, in addition to quali-
tative properties, permits specifying time-bounded probabilistic reachability properties
and properties about resource distribution. The properties of interest are then verified
against the SToKrLAm specifications by exploiting the analysis tool Sam [8, 19].

To demonstrate the approach, we analyse a collective transport scenario [10], in
which, while avoiding obstacles, a group of three robots must catry an object that is too
heavy for a single robot to move. This behaviour is a good candidate to establish the
validity of our approach since it has many of the features which characterize collective
robotic systems. Indeed, the system is completely distributed (there is neither a central-
ized controller nor a leader), the robots do not have any global knowledge, such as a
map of the environment, and no common frame of reference is used for coordination.

Modelling collective robotic systems is a challenging task. Indeed, for understand-
ing their dynamics, it is necessary to model in detail both the spatial aspects (e.g. posi-
tions of robots, obstacles and carried objects) and the temporal aspects (e.g. robots’ ac-
tion execution time) of a system. These aspects are crucial since, e.g., without the po-
sition of robots and carried objects in time the model would be of limited use to verify
the correctness of the collective transport behaviour. Differently from the relevant lit-
erature, in which spatial and temporal aspects are usually discarded or simplified (see,
e.g., [18, 12]), our approach allows us to easily achieve the needed level of detail. The
price to be paid is an increased complexity of the model that might limit the number of
robots that can be considered in a given scenario.

In addition to suit collective robotic systems, compositionality and high modularity,
which are typical of Kiam and StoKram specifications, allow us to easily and flex-
ibly experiment with different values of the behaviour and scenario parameters. This
permits tuning them in order, for example, to optimise the performance of the system
or prevent instabilities. Moreover, the possibility to change the parameters of the envi-
ronment permits to easily check the collective behaviour of the robots under different
environmental conditions while saving time and resources with respect to simulated or

real robots. E.g., regarding our scenario, we have studied how robots’ behaviour is in-
fluenced by the position of the light source indicating the goal area. We have verified
that if the robots do not perceive the light they could not be able to reach the goal, and
demonstrated that a simple change to their behaviour is enough to solve this problem.

State of the art and related work. Formal verification has been successfully applied to
many different classes of distributed systems, such as embedded real-time systems and
wireless sensor networks [6,20]. These kinds of systems, even though distributed, do
not present the challenges of robotic systems. In fact, their components do not move
and do not interact with the environment as a robot does. Considering more specifically
modelling and verification of collective robotic systems, most of the work focuses on
systems that are not fully distributed as they have a centralized controller or a leader, or
make use of global knowledge. Examples of such work can be found in [15, 11].

Only a few studies deal explicitly with robotic systems which are fully distributed
and do not use global knowledge. Winfield et al. [21] devised a microscopic modelling
approach based on linear temporal logic (LTL) to model a swarm of robots whose
goal is to navigate in the environment while keeping in communication range. The
same approach was then studied and expanded in [9]. Konur et al. [17] proposed to
use probabilistic computation tree logic (PCTL) to formally verify the properties of a
swarm of robots that perform a foraging task using a macroscopic model. A similar
property-driven approach is proposed in [3], where PRISM is used to verify PCTL for-
mulae expressing properties of an aggregation scenario, described by a Discrete Time
Markov Chain, where the robots have to cluster in an area of the environment. The de-
sign methodology proposed in [16] exploits a post hoc analysis to evaluate the expected
performance of synthesized robot controllers. Such analysis does not permit verifying
generic system properties, but just determining the probability of correct task execution
to refine the controller synthesis. Moreover, robot systems are not specified through a
linguistic approach, but in terms of states, functions over states, and state transitions. In
[4], the use of Maude and related tools is put forward for analysing a self-assembling
robots scenario, where robots physically connect to each other when the environment
prevents them from reaching their goals individually. The work focusses on the adap-
tive aspects of the system, while abstracting from the spatial one, since the arena is
modelled as a discrete grid and robots movements are discretized into four directions.

All the above approaches greatly simplify the spatial and/or temporal aspects of the
system and are thus not suited for a collective transport behaviour. Moreover, in contrast
to these approaches, we focus on analysing the properties of a robot’s behaviour both
from the point of view of the interaction between the running code and the robot’s
internal devices (i.e. sensors and actuators) and from the point of view of the interaction
with the other robots. To the best of our knowledge, there are no published works that
deal with modelling and formal verification of a collective transport behaviour.

Summary of the rest of the paper. In Section 2, we introduce the considered robotics
scenario. In Section 3, we review the formal basis underlying the proposed verification
approach, namely the specification language Kramv, the stochastic extension StoKram,
the stochastic logic MoSL, and the analysis tool Sam. In Section 4, we describe the rel-
evant aspects of the Kram specification of the scenario, while in Section 5, we present
its stochastic analysis. Finally, in Section 6 we indicate directions for future work.

—£>< Goal Direction) (Motion Control)

Symbol Meaning
L Set of light readings
D Set of distances
M | Set of received messages
m Sent message
v&7 | Vector toward to the goal area
Vector to avoid obstacles
6% | Individual desired direction
w//w" | Left/right wheel speed
67 | Mediated direction

Direction Mediation

—{ R&B H Distance |—| Light |

Sensors Actuators

Fig. 1. A diagrammatic description of the behaviour for collective transport of an object

2 A collective robotics scenario

In order to illustrate our approach, we consider a robotics scenario, borrowed from [10],
whereby three identical robots must collectively transport an object to a goal area. The
robots operate in an arena where a number of obstacles are present and a light source
indicates the goal area. It is assumed that the three robots have already physically as-
sembled to the object to transport and cannot disassemble until the goal area is reached.

Each robot is a marXbot [2] equipped with: (i) a light sensor, to perceive the direc-
tion to a light source; (ii) a distance scanner, to obtain relative distances from objects
in the environment; (iii) a range and bearing communication system, to communicate
with other robots; (iv) wheels, to move around the environment.

All robots execute the same code, i.e., the so-called behaviour. Each of them senses
the environment and calculates the desired direction, that is, the direction the robot
would follow if it were alone. Since each robot has a local perception of the environ-
ment, the desired directions of the robots could differ. In fact, at each control step, one
robot could sense or not the position of the goal and/or the position of obstacles. Ac-
cording to the available information, in different moments, a robot can be informed, that
is, it has a desired direction to follow, or non-informed otherwise. Informed robots com-
municate to the other robots their desired direction. Anyway, to actuate the wheels, any
robot uses a socially mediated direction obtained by averaging the received directions,
so all robots can follow the same direction even if they have a different perception of
the environment.

A diagrammatic description of the behaviour, together with an explanation of the
used notation, is reported in Fig. 1. The horizontal blobs are behavioural modules that
take an input and produce an output. The output is usually a set of variables that can
be input to other modules or set as actuator values, while the input can be the result of
other modules and/or sensor readings. The behaviour is composed of five modules.

Goal Direction queries the light sensors to calculate the vector v&¢ to the position of
maximum light intensity sensed, which points toward to the goal area. 24 light sensors
are located around the body of the robot in a ring at uniform fixed angles, and each

of them returns the measured intensity expressed as a vector directed from the robot’s
center outwards. The vector v&¢ is calculated as a normalised sum over these 24 vectors.
Obstacle Avoidance detects the presence of obstacles and calculates the vector v** that
points away from the obstacle. The distance scanner is a rotating sensor that can span
the area around the robot and return 24 vectors whose length corresponds to the distance
to a sensed object from the center of the robot (if no obstacle is perceived along a given
direction, the length of the vector is 0bs_dyax). The length of vector v** corresponds
to the distance to the closest object rescaled in [0, 1], while its angle corresponds to the
angle of the sum of all the readings. Notably, the resulting angle points away from the
closest obstacles, because the readings that correspond to obstacle-free areas have the
highest value obs_dyax. Direction Arbiter takes as inputs v¢¢ and v°* and calculates the
direction 6%, that is the desired direction of the robot before computing the mediated
direction. Since the length of v’ represents how urgent it is to avoid obstacles, we use it
as a weight to combine the directions to the goal area and to avoid obstacles. Direction
Mediation calculates the mediated direction 8" as the average of the directions received
from other robots through the range and bearing communication system. This module
sends a message m to nearby robots containing 64¢, if the robot is informed, and 6"
otherwise. Motion Control converts the direction #%" into the wheel speeds w" and w'.

3 Formal foundations of the verification approach

In this section, we provide a brief overview of the formal methods exploited by the
proposed approach for specifying and verifying collective robotic systems.

Specification. A distributed system is modelled in Kram as a net of nodes, each one
with a local data repository and a set of running processes. We informally present here
a version of KLam enriched with some standard control flow constructs (i.e., if-then-
else, sequence, etc.) that are part of the input language of the analysis tool used in
Section 5. These constructs simplify the specification task and can be easily rendered
in the language originally presented in [7]. For simplicity’s sake, we omit the linguistic
constructs for dealing with name restriction and dynamic node creation, since they are
not used in the considered robotics system specification. We refer to [7] for a formal
presentation of the language and to [1] for a Java framework for programming in Kram.
Nets are finite plain collections of nodes composed by means of the parallel com-
position operator _ || _. Nodes s ::, C have a unique locality name s (i.e., their network
address) and an allocation environment p, and host a set of components C. An alloca-
tion environment provides a name resolution mechanism by mapping locality variables |
(i.e., aliases for addresses), occurring in the processes hosted in the corresponding node,
into localities s. The distinguished locality variable self is used by processes to refer to
the address of their current hosting node. Components are finite plain collections of
processes P and evaluated tuples (#), composed by means of the parallel operator _ | _.
Processes P are the KLAIM active computational units and may be executed concur-
rently either at the same locality or at different localities. They are built up from basic
actions (see below) and process calls A(py, . . ., p,,) by means of sequential composition
Py; Py, parallel composition P | P, conditional choice if (¢) then {P} else { O}, iterative
constructs for i = n to m { P } and while (e) {P}, and (possibly recursive) process defini-

tions A(fi, ..., f) = P with f; pairwise distinct. Notably, A denotes a process identifier,
while f; and p; denote formal and actual parameters, respectively. Moreover, e ranges
over expressions, which contain basic values (booleans, integers, strings, floats, etc.)
and value variables x, and are formed by using the standard operators on basic values,
simple data structures (i.e., arrays and lists) and the non-blocking retrieval actions inp
and readp (explained below). In the rest of this section, we will use the notation ¢ to
range over locality names and locality variables.

During their execution, processes perform some basic actions. Actions in(7)@¢
and read(7")@{ are retrieval actions and permit to withdraw/read data tuples from the
tuple space hosted at the (possibly remote) locality ¢: if a matching tuple is found, one is
non-deterministically chosen, otherwise the process is blocked. They exploit templates
as patterns to select tuples in shared tuple spaces. Tuples t are sequences of actual fields,
i.e. locality names, locality variables, expressions and processes. Instead, templates T
are sequences of actual and formal fields, where the latter are written ! x, !/ or ! X and
are used to bind variables to values, locality names or processes, respectively. For the
sake of readability, we use “_” to denote a don’t care formal field in a template; this cor-
responds to a formal field ! dc using the variable dc that does not occur elsewhere in the
specification. Actions inp(7) @¢ and readp(7') @¢ are non-blocking versions of the re-
trieval actions: namely, during their execution processes are never blocked. Indeed, if a
matching tuple is found, inp and readp act similarly to in and read, and additionally re-
turn the value true; otherwise they return the value false and the executing process does
not block. inp(7)@¢ and readp(7T)@¢ can be used where either a boolean expression
or an action is expected (in the latter case, the returned value is simply ignored). Action
out(r)@¢ adds the tuple resulting from the evaluation of 7 to the tuple space of the tar-
get node identified by ¢, while action eval(P)@¢ sends the process P for execution to
the (possibly remote) node identified by ¢. Both out and eval are non-blocking actions.
Action rpl(T) — (t)@¢ atomically replaces a non-deterministically chosen tuple in ¢
matching the template T by the tuple ¢; if no tuple in ¢ matches T, the action behaves
as out(r) @¢. Finally, action x := e assigns the value of e to x and, differently from all
the other actions, it is not indexed with an address because it always acts locally.

Verification. Quantitative analysis of a KrLam specification can be enabled by associat-
ing a rate to each action, thus obtaining a StoKram [8] specification. This rate is the
parameter of an exponentially distributed random variable accounting for the action du-
ration time. A real valued random variable X has a negative exponential distribution
with rate A > 0 if and only if the probability that X < ¢, with ¢ > 0, is 1 — e,
The expected value of X is A, while its variance is 172. The operational semantics of
StoKrLAM permits associating to each specification a Continuous Time Markov Chain
that can be used to perform quantitative analyses of the considered system.

The desired properties of a system under verification are formalised using the
stochastic logic MoSL [8]. MoSL formulae use predicates on the tuples located in the
considered Kramm net to express the reachability of the system goal, or more generally,
of a certain system state, while passing or not through other specific intermediate states.
Therefore, MoSL can be used to express quantitative properties of the overall system
behaviour, such as, e.g., if the robots are able to reach the goal, or collisions between
the robots and the obstacles ever happen in the system. The results of the evaluation of

robot env

Abehaviour [Alight] [Adistance] [Acommunication] [Amove]
TUPLE SPACE }’ [TUPLE SPACE }

roboto
robotg

Fig. 2. Graphical representation of the Kram specification

such properties do not have a rigid meaning, like frue or false, but have a less absolute
nature, e.g. in 99.7% of the cases, the robots reach the goal within t time units.

Verification of MoSL formulae over StToKLam specifications is assisted by the anal-
ysis tool Sam [8, 19], which uses a statistical model checking algorithm [5] to estimate
the probability of the property satisfaction. In this way, the probability associated to a
path-formula is determined after a set of independent observations and the algorithm
guarantees that the difference between the computed value and the exact one exceeds a
given tolerance & with a probability that is less than a given error probability p.

4 Specification of the robotics scenario

In this section, we present the KLam specification of the robots’ behaviour informally
introduced in Section 2. Moreover, to formally analyse the behaviour, we specify the
low-level details about the robots and the arena where the robots move, i.e., the obsta-
cles, the goal, etc. We use Kramm to model also these aspects because, on the one hand,
the language is expressive enough to suitably represent them and, on the other hand,
this approach enables the use of existing tools for the analysis of Kram specifications.

Here, we focus only on the qualitative aspects of the scenario. In the next section,
our specification will be enriched with quantitative aspects by simply associating a rate
to each Kram action, thus obtaining a SToKram specification.

The scenario model. The overall scenario is rendered in KLam by the following net

r()b()tl ::(self»—»rubotl) Abehaviaur | CrobotData 1
” r0b0t2 ::(selerohotz) Abelmviour | Cm[m/DaraZ
” r0b0t3 ::(selerobolg) Abehavinur | CrohotDma3

” eny ::(selfHem',r]Hroh(rt],r2>—>mbat2,r3!—>mbot3) Alight | Adi,\'tance | Acummunizrarion | Anwve | CenvDam

which is graphically depicted in Fig. 2. The three robots are modelled as three Kram
nodes whose locality names are robot;, robot, and robots. Similarly, the environment
around the robots is rendered as a node, with locality name env, as well. The allocation
environment of each robot node contains only the binding for self (i.e., self — robot,),
while the allocation environment of the env node contains the binding for self (i.e.,
self — env) and the bindings for the robot nodes (i.e., ; — robot;, with i € {1,2,3}).
The behaviour is rendered as a process identified by Apenaviour, Which is exactly the
same in all three robots. The items of local knowledge data C,,porpasai Of €ach robot are

stored in the tuple space of the corresponding node and consist of sensor readings and
computed data; at the outset, such data are the sensor readings at the initial position.

The processes running on the env node provide environmental data to the robots’
sensors and keep this information up-to-date as time goes by according to the actions
performed by the robots’ actuators. The process Ay, given the position of the light
source and the current position of the robots, periodically computes the information
about the light position for each robot and sends it to them. This data corresponds to
the values obtained from light sensors and is stored in the tuple space of each robot.
Similarly, the process Agisunce provides each robot with information about the obsta-
cles around it. The process A ommunication Models the communication infrastructure and,
hence, takes care of delivering the messages sent by the robots by means of their range
and bearing communication systems. Finally, the process A,,,. periodically updates the
robots’ positions according to their directions.

The data within the env node can be static, such as the information about the ob-
stacles and the source of light, or dynamic, such as the robots’ positions. The tuples
Convpata are stored in the tuple space of this node and their meaning is as follows
(as usual, strings are enclosed within double quotes): (“pos”, x1, y1, X2, 2, X3, ¥3) r€p-
resents the positions (x1,y;1), (x2,¥2) and (x3,y3) of the three robots; (“light”, x;, y;, i)
represents a light source, with intensity i and origin in (x;, y;), indicating the goal posi-
tion; (“obstacles”, m) indicates the total number of obstacles present in the environment
(this permits simplifying the scanning of obstacles data in the KLam specification);
and (“obs”,n, x1,y1, X2, Y2, X3, ¥3, X4, 4) represents the n-th rectangular-shaped obsta-
cle, with vertices (x1,y1), (x2,¥2), (x3,y3) and (x4, y4).

It is worth noticing that, while the KLAmM process Apenaviour 15 intended to model the
actual robot’s behaviour (e.g., it could be used as a skeleton to generate the code of the
behaviour), the KLam processes and data representing the robots’ running environment
(i.e., sensors, actuators, obstacles, goal, etc.) are just models of the environment and of
physical devices, which are needed to enable the analysis.

The robot model. Each robot executes a behaviour that interacts with the robot’s tuple
space for reading and producing sensors and actuators data to cyclically perform the
following activities: sensing data about the local environment, elaborating the retrieved
knowledge data to make decisions, and acting according to the elaborated decisions
(i.e., it transmits data to other robots and actuates the wheels to perform a movement).
Different choices can be made when developing the model of the robot [18]. We
have chosen to model individually the behaviour of each robot and the corresponding
sensors and actuators. We illustrate in this section the data associated to the robots’
sensors and actuators, and the Kramm specification of the robots’ behaviour (due to lack
of space, the rest of the specification is relegated to a companion technical report [14]).

Robots’ sensor and actuator data. The light sensor data is rendered in KLam as a tuple
of the form (“light”, £), where “light” is a tag indicating the sensor originating the data
while € is an array of 24 elements. For each i € [0, 23], £[i] represents the light intensity
perceived by the sensor along the direction 271%.

The tuple containing the measures of the distance scanner sensor is similar. Indeed,

it is of the form (“obs”, d), where “obs” is the tag associated to distance scanner sensor

data and d is an array of 24 elements. For each i € [0, 23], d[{] is the distance to the
closest obstacle measured by the sensor along the direction 277%.

The range and bearing communication system acts as both a sensor and an actuator.
Indeed, it allows a robot to send messages to other robots in its neighborhood and to
receive messages sent by them. A process running in the environment node is used to
read (and consume) the messages produced by each robot’s behaviour and to route them
to the other robots (through the environment node). This process models the commu-
nication medium and specifies the range and bearing communication system without
considering explicitly the details of the underlying communication framework. Each
robot stores received messages in a local tuple of the form (“msgs”, [m,ms, ..., m,])
representing a queue of length n containing messages mj,m,,. .. ,m,”*. Instead, to send
a message to other robots, a behaviour locally stores a tuple of the form (“msg”, m).
The process running on the environment node is in charge of reading each message and
propagating it to the other robots that are in the sender’s communication range.

Finally, the wheel actuators are rendered as a process running in the environment
node that reads the new directions to be followed by the robots (i.e., tuples of the form
(“move”, 8)) and updates the robots’ position (which is, in fact, an information stored
in the tuple space of the environment node). This slightly differs from the original spec-
ification given in Section 2, where the Motion Control module converts the direction
calculated by the Direction Mediation module into speeds for the two wheels, which
are then passed to the wheels actuator. In fact, although our specification is quite de-
tailed, it is still an abstract description of a real-world scenario. Thus, some details that
do not affect the analysis, such as those involving the calculation of the robots’ move-
ments, are considered at an higher level of abstraction.

For simplicity’s sake, we do not consider noise and failures of sensors and actuators.

Robot’s behaviour. The process Apehaviour» modelling the robot’s behaviour graphically
depicted in Fig. 1, is defined as follows:

A
Abehav[nur = AgoalD[reclion Ith.v/acleAvoidancc |Ad[recti0nArb[ter |AdirectionMediati(m | Amm[onControl

Each behavioural module (i.e., a yellow blob in Fig. 1) corresponds to one of the above
Kram processes, whose definitions are provided below. The specification code is made
self-explanatory through the use of comments (i.e. strings starting with //).

The Goal Direction module takes as input the last light sensors readings (here ren-
dered as a tuple of the form (“light”, £)) and returns the vector v&d (actually, here only
the direction of v¢? is returned, because its length is always 1 and does not play any
role on the computation of the new direction to be followed). This behavioural module
is modelled by the recursive process Agoaipireciion defined as follows:

AgoalDirectiwz =
Xsum s Ysum = 05
read(“light”, |0) @self; //read the tuple containing the light sensor readings
for i = 0 to 23{
Xsum = Xgm + C[i] - cos(2mi/24); // calculate the coordinates of the final point of the. ..
Ysum = Ysum + Cli] - sin(2mi/24); // ... vector (with the origin as initial point) resulting. . .
}; // ...from the vectorial sum of the reading vectors

4 [vi,...,v,] denotes a list of n elements, [] the empty list, and :: the concatenation operator.

10

if ((Xgum ! = 0) A (Ygum ! = 0)) then { // check if the light is perceived

£v8 = Angle(0,0, Xgum, Ysum); // calculate £ v&?, ie., the direction of vector v&¢
rpl(“vgd”,) — (“vgd”, L vé*)@self; // update the vector v¢¢ data
} else {

inp(“vgd”,)@self //if the light is not preceived, remove the previous vector v¢¢ data

}; AgnalDirection

The sensor readings are always present in the tuple space, because they are present at
the outset and the processes modelling behavioural modules do not consume sensor data
while reading or updating them. Therefore, the read action before the for loop above
never blocks the execution of process Aggapireciion- In principle, by pooling the tuple
space in this way, the same sensor data could be read more than once; this faithfully
reflects the actual interaction model between the robots code and the sensors. Anyway,
it does not lead to divergent behaviours during the analysis, because such interactions
are regulated by the action rates specified in the SToKramv model (see Section 5).

The function Angle(xo, yo, X1, y1), used above and in subsequent parts of the speci-
fication, returns the direction (i.e., the angle) of the vector from (xo, yo) to (x1,y;). We
refer the interested reader to [13] for its definition.

The Obstacle Avoidance module takes as input the last distance sensors readings
(here rendered as a tuple of the form (“obs”, d)) and returns the vector v**. This be-
havioural module is modelled by the process A,psracieavoidance defined as follows:

AobstacleAvoidance =
Xsum » Ysum = 03 min := obs_dyayx;
read(“obs”, \d)@self; //read the tuple representing the distance sensor readings
for i = 0 to 23{
Xsum = Xgm + d[i] - cos(2mi/24); // calculate the coordinates of the final point of the. ..
Vsum = Ysum +d[i] - sin(2mi/24); // ... vectorial sum of the reading vectors
if (d[i] < min) then min := d[i] // calculate the minimum length of the vectors
|5
[| v || := min/obs_dyax; // calculate || v* ||, i.e., the length of vector v** rescaled in [0, 1]
LV = Angle(0, 0, Xgm, Vam); // calculate 2 v, i.e., the direction of vector v
rpl(“voa”, _,) — (“voa”,|| v** ||, £ v**)@self; // update the vector v** data

Anb stacleAvoidance

where obs_dyax is the maximum range of the distance sensor (in [10], it is set to 1.5 m).
The process Agirecrionarirer modelling the Direction Arbiter module, which takes v&d
and v°“ as input and returns the direction 644 is defined as follows:

AdirectionArbiter =
in(“voa”, voa_l, 16°*)@self; // read and consume the tuple containing v* (it’s always present)
if (inp(“vgd”, !0¢/)@self) then { // read and consume the tuple containing v¢ (if available)
vl = (1 =voa.l) - cos(*®) + voa-cos(6%%); [/ calculate the coordinates of the. ..
v;’," = (1 =voa.l) - sin(6°*) + voa_l- sin(6%%); // ...vector to the desired direction
6% = Angle(0, 0, vff“, v;’“); // compute the angle ga
rpl(“da”,) — (“da”,0)@self; //update the angle #*“ data
} else {
if (voa_l < 1) then { // check if any obstacle has been detected
rpl(“da”,) — (“da”,6°*)@self // use the obstacle avoidance direction as 4

}

} 5 AdirecrionArbiter

11

Notably, differently from sensor readings, data produced by other modules (e.g. v&¢ and
v°%) are removed from the tuple space when read.

The Direction Mediation module takes as input the direction 8¢ computed by the
Direction Arbiter and the last received messages (here rendered as a tuple of the form
(“msgs”, [my,my, . ..,m,])) and returns the direction 69" to be used by the Motion Con-
trol module, and a message m, to be sent to the other robots via the range and bearing
system. The Direction Mediation module is modelled by the following process:

AdirectionMediation =
c, sumy, sum, = 0;
rpl(“msgs”, 1) — (“msgs”, []) @self; //read and reset the list of received messages
while (I == 6 :: tail) { // scan the list
| = tail,
sum, = sum, + cos(@); // calculate the sum of the received. ..
sumy = sum, + sin(6); //...directions
¢ = c+ 1 //increase the counter of the received messages
|5
if (¢ == 0) then { // check if there are received messages
if (inp(“da”, !¢*)@self) then { // if there aren’t, check if the robot is informed
rpl(“dir’,) — (“dir”,6%)@self; // update the direction data for the motion control
rpl(“msg”,) — (“msg”, 8°)@self // update the message to be sent to the other robots
}
} else { // if there are received messages,. . .
6% = Angle(0, 0, sum,, sumy); // ...calculate the average direction and proceed
(rpl(“dir”, J) — (“dir”,68")@self // update the data for the motion control
|
(if (inp(“da”, 16?) @self) then { // check if the robot is informed
m := 6% [/if it is, the produced message contains 6%
} else {
m = @ //if the robot is not informed, the produced message contains 6"
I3
rpl(“msg”,) — (“msg”, m)@self // update the message to be sent to the other robots
)
)

}; AdirectionMediation

Notice that the tuple containing the direction % is consumed when read. Thus, to avoid
blocking the execution of the process, to read such tuple an action inp (within the con-
dition of an if construct) is exploited.

The Motion Control module takes as input the direction computed by the Direction
Mediation module and transmits it to the wheels actuator. The Motion Control module
is modelled by the following process:

A
AmotionConrral -

in(“dir”, 16*")@self; // wait (and consume) a direction of movement
rpl(“move”,) — (“move”, 09 @self; // transmit the direction to the wheels actuator

AmotionC ontrol

As previously explained, we do not need to model the conversion of the direction cal-
culated by the Direction Mediation module into speeds for the wheels.

12

Fig. 3. Arena and initial configuration

5 Stochastic specification and analysis

In this section, we demonstrate how the Kram specification presented n the previous
section can support the analysis. The proposed methodology can be used to verify the
system success, obtaining accurate estimations of the system performance expressed in
terms of the probability of reaching the goal without entering unwanted intermediate
states. This permits making comparisons of the algorithm performance in different sce-
narios, which may use different features of the obstacles, transported objects, terrain,
and also different goals and requirements. It also permits to analyse different details
of the system behaviour, which can provide helpful information for understanding the
reasons why an unwanted behaviour is observed and can allow the system designer to
tune the system in order to improve its performance under different conditions. Our
approach relies on formal tools, like stochastic modal logics and model checking, that
permits expressing and evaluating performance measures in terms of logical formu-
lae. In this way, we obtain a framework for the analysis of collective robotic systems
which is more abstract and expressive than existing simulation frameworks, where the
analysis is typically performed by relying on an a posteriori data analysis. Moreover,
for the sake of efficiency, simulators are usually deterministic, e.g. all robots act syn-
chronously. This means that some possible behaviours of a real system are not taken
into account in the simulation. Instead, stochastic modelling tools permit considering
the typical uncertainty of real systems, e.g. by abstracting from the precise scheduling
of robot movements. In this way, developers are guaranteed that their analyses cover
more critical situations of the considered scenario, according to a given margin of error.

We now enrich the Kramv specification introduced in the previous section with
stochastic aspects and consider the scenario configuration presented in [10] and de-
picted in Fig. 3. Seven rectangular objects are scattered in the arena, while the light
source is positioned high above the goal area and is always visible to the robots. We as-
sume that robots, on average, are able to perform 10 sensor readings per second and that
they have an average speed of 2cm/sec, and let the part of the specification modeling
the environment be able to perform a mean of 100 operations per second. Starting from
these parameters we have derived specific rates for defining the SToKLAIM specification.
As an excerpt of the StoKrLAm specification, we report below the stochastic definition

of process AubstacleA voidance+

A

AnbxtacleAvoidam‘e =

Xsum s Ysum = 0; min = obs_dyax;

read(“obs”, !d)@self : 1, ;

fori=0to23{...}; || v*|:= min/obs_dyax; £v* := Angle(0,0, Xum,Ysum);
rpl(“voa”, _,) — (“voa”,|| v** ||, £ v**)@self : A, ;

AnbstacleA voidance

The actions highlighted by a gray background are those annotated with rates A, where
A1 = 24.0 and 1, = 90.0. These rates guarantee that obstacle avoidance data are up-
dated every ﬁ + % time units on average, i.e. about 20 times per second. We refer the
interested reader to [13] for the rest of the stochastic specification.

The result of a simulation run of the StoKram specification, performed by using
Sawm, is reported in Fig. 4 (a). The trajectories followed by the three robots in this run
are plotted in the figure with three different colors; they show that the robots reach the
goal without collisions. On an Apple iMac computer (2.33 GHz Intel Core 2 Duo and
2 GB of memory) simulation of a single run needs an average time of 123 seconds.

We have analysed the probability to reach the goal without colliding with any ob-
stacles. The property “robots have reached the goal area” is formalized in MoSL, for
the specific system under analysis, by the formula ¢, defined below:

Ggoal = (“pos”, 1x1, y1, 1x2, o, 1x3, ly3) @env — y1 2 4.0 Ay, 24.0Ay3 2 4.0

This formula relies on consumption operator, (T)@[— ¢, that is satisfied whenever a
tuple matching template 7" is located at / and the remaining part of the system satisfies ¢.
Hence, formula ¢g, is satisfied if and only if tuple (“pos”, x1,y1, X2, ¥2, X3, ¥3), where
each y; is greater than 4.0, is in the tuple space located at env (all robots are in the goal
area). Similarly, the property “a robot collided an obstacle” is formalized by:

deor = (“collision”y@eny — true

where tuple (“collision”) is located at env whenever a robot collided an obstacle.

The considered analyses have been then performed by estimating the total proba-
bility of the set of runs satisfying =¢.,;U~'¢¢ou Where the formula ¢ U~'¢, is satisfied
by all the runs that reach within # time units a state satisfying ¢, while only traversing
states that satisfy ¢,. In the analysis, a time-out of 500sec has been considered.

Under the configuration of Fig. 3, i.e. when the robots are always able to perceive
the light, we get that the goal can be reached without collisions with probability 0.916,
while robots do not reach the goal or collide with obstacles with probability 0.084 (these
values have been estimated with parameters p = 0.1 and & = 0.1, 1198 runs). Such
results are in accordance with those reported in [10], where the estimated probability to
reach the goal is 0.94. The slight variation is mainly due to a different way of rendering
robots movement, which is computed via a physical simulator in [10], while in our case
it is approximated as the vectorial sum of the movement of each single robot.

We have then modified the original scenario by locating the light source on the
same plane of the arena and we noticed that the overall system performances are deeply
influenced. Indeed, since objects cast shadows, they can prevent robots from sensing

14

(a) (b)

2 L L L L L L 2 L L L L L L L
-4 3 2 -1 0 1 2 3 4 -4 3 2 -1 0 1 2 3 4

Fig. 4. Some simulation results obtained for the robotics scenario from [10]

(@) (b)

10 . 10 .

2 L L L L L L 2 L L L L L L L
-4 -3 2 -1 0 1 2 3 4 -4 -3 2 -1 0 1 2 3 4

Fig. 5. Some simulation results obtained for a simple robotics scenario

the light. Under this configuration, the robots are not able to reach the goal area (see
Fig. 4 (b) for a simulation trace representing a sort of counterexample for the given
property) and the probability to reach the goal without collisions plummets to 0.0.

In order to validate our model and to verify the robots’ behaviour, we have also
considered other scenarios. In Fig. 5 (a) we show a simpler scenario where just two
obstacles are placed at the center of the arena. At the beginning, the obstacles do not
hide the light to the robots. However, when the first obstacle enters in the range of the
robots’ distance sensors, the robots turn to right, enter in the shadow cast by the second
object and then never reach the goal area. This problem can be avoided by modifying the
robot behaviour so that, when the light is not perceived, the last known goal direction is
used. The adoption of this simple policy increases the probability to reach the goal area
without collisions, from 0.234 to 1.0 (see the simulation run in Fig. 5 (b)).

6 Concluding remarks

We have presented a novel approach to formal verification of collective robotic systems
and validated it against a traditional approach consisting in physics-based simulations.
We have shown that the obtained results are in accordance with those resulting from
physics-based simulations and reported in [10], which have been in fact exploited for
tuning the quantitative aspects of our analysis (e.g. the robots’ actions execution time).

Our approach paves the way for the definition of a 5-step engineering methodology
based on formal foundations. In the first step, the designer models the system formally
with Kram. In the second step, he adds stochastic aspects to enable its analysis and anal-
yses the system properties to discover flaws in the formal model. These two steps can
be iterated, allowing the designer to discover and fix flaws of the system even before the
actual code is written. In the third step, the specification is converted into (the skeleton
of) the robots behaviour code. In the fourth step, the code is tested with physics-based
simulations, to reveal further model-worthy aspects that were neglected in the first two
steps. Finally, in the fifth step, robots behaviour is tested on real robots. The focus of
this paper is on the definition of the first two steps.

We believe that the development methodology we envisage has many advantages
when compared with ad-hoc design and validation through physics-based simulation
and experimentation with real robots. Indeed, it permits to formally specify the require-
ments of the system and to minimize the risk of developing a system that does not
satisfy the required properties, as these properties are checked at each step of the devel-
opment phase. It also permits detecting potential design flaws early in the development
process thus reducing the cost of later validation efforts.

Depending on the complexity of the system to develop, implementing the model for
enabling physics-based simulation might not be straightforward and could require the
ingenuity and expertise of the developer. Therefore, we intend to define and implement
an automatic translation from Kram specifications of robot behaviours to actual code
that can be taken as input by the physics-based simulator. This would allows us to com-
plete the 5-step development process mentioned above. We also plan to apply our ap-
proach to other challenging robotic scenarios, by studying the performance of different
robot behaviours while changing environmental conditions and system requirements.

Moreover, we intend to consider more abstract system specifications to conveniently
deal with swarm robotics scenarios. In fact, to enable the verification of the class of
properties we deemed interesting for the collective robotics domain, we have defined a
very detailed model of the system under analysis. Indeed, the model we propose per-
mits taking into account, during the analysis process, the exact position of each robot,
as well as any other information about its internal state, at each instant of time. The
model fits well with collective transport scenarios, where usually a limited number of
robots are involved; however, it may become not tractable using available tools when
the number of robots significantly grows. To deal with such kind of scenarios, like e.g.
the swarm robotics one, the abstraction level of the model has to be gradually raised
up in accordance with an increasing number of robots, by focussing on those aspects
of the system that become most relevant. This approach would be reasonable in case of
swarms, because the properties of interest are no longer related to the exact position of
each single robots, but concern the global (abstract) behaviour of the overall system.

16

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365-1394, 2002.

M. Bonani et al. The marxbot, a miniature mobile robot opening new perspectives for the
collective-robotic research. In IROS, pp. 4187—4193. IEEE, 2010.

. M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. Property-driven design for swarm

robotics. In AAMAS. IFAAMAS, 2012. To appear.

. R. Bruni et al. Modelling and analyzing adaptive self-assembling strategies with maude. In

WRLA, LNCS. Springer, 2012. To appear.

. F. Calzolai, and M. Loreti. Simulation and Analysis of Distributed Systems in Klaim. In

COORDINATION, LNCS 6116, pp. 122—136. Springer, 2010.

. E. M. Clarke, and J. M. Wing. Formal methods: state of the art and future directions. ACM

Comput. Surv., 28:626-643, December 1996.

. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interac-

tion and Mobility. Transactions on Software Engineering, 24(5):315-330, 1998.

. R. De Nicola, J. Katoen, D. Latella, M. Loreti, and M. Massink. Model checking mobile

stochastic logic. Theor. Comput. Sci., 382(1):42-70, 2007.

. C. Dixon, A. Winfield, and M. Fisher. Towards Temporal Verification of Emergent Be-

haviours in Swarm Robotic Systems. In TAROS, LNCS 6856, pp. 336-347. Springer, 2011.
E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo. Socially-Mediated Negotiation for
Obstacle Avoidance in Collective Transport. In DARS, STAR. Springer, 2010. To appear.
M. Fisher, and M. Wooldridge. On the formal specification and verification of multi-agent
systems. Int. Journal of Cooperative Information Systems, 6(1):37-66, 1997.

A. Galstyan, T. Hogg, and K. Lerman. Modeling and Mathematical Analysis of Swarms of
Microscopic Robots. In SIS, pp. 201-208. IEEE, 2005.

E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi. Specification and Analysis of a Col-
lective Robotics Scenario in SAM, 2011. SAM source file available at http://rap.dsi.
unifi.it/SAM/.

E. Gjondrekaj et al. Towards a formal verification methodology for collective robotic sys-
tems. Technical report, Univ. Firenze, 2011. http://rap.dsi.unifi.it/~loreti/
papers/collective_transport_verification.pdf.

S. Jeyaraman et al. Formal techniques for the modelling and validation of a co-operating
UAV team that uses Dubins set for path planning. In ACC 7, pp. 4690-4695. IEEE, 2005.
C. Jones, and M.J. Mataric. Synthesis and analysis of non-reactive controllers for multi-robot
sequential task domains. In ISER, STAR 21, pp. 417-426. Springer, 2004.

S. Konur, and C. Dixon. Formal verification of probabilistic swarm behaviours. In ANTS,
number 6234 in LNCS, pp. 572-573. Springer, 2010.

K. Lerman, A. Martinoli, and A. Galstyan. A Review of Probabilistic Macroscopic Models
for Swarm Robotic Systems. In SAB, LNCS 3342, pp. 143-152. Springer, 2005.

M. Loreti. SAM: Stochastic Analyser for Mobility. http://rap.dsi.unifi.it/SAM/.
J.A. Stankovic. Strategic directions in real-time and embedded systems. ACM Comput. Surv.,
28:751-763, December 1996.

A. Winfield et al. On Formal Specification of Emergent Behaviours in Swarm Robotic Sys-
tems. Int. Journal of Advanced Robotic Systems, 2(4):363-370, 2005.

