Skip to main content

Non-negative Matrix Factorization: A Short Survey on Methods and Applications

  • Conference paper
Computational Intelligence and Intelligent Systems (ISICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 316))

Included in the following conference series:

  • 2624 Accesses

Abstract

Non-negative matrix factorization (NMF) has been shown to be useful for a variety of practical applications. To meet the requirements of various applications, some extensions of NMF have been proposed as well. This paper presents a short survey on some recent developments of NMF on both the algorithms and applications. Some potential improvements of NMF are also suggested for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Notices of the AMS 52, 1320–1329 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Roweis, S.T.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  3. Moore, B.: Principal component analysis in linear system: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  4. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer Science Business Media (2007)

    Google Scholar 

  5. Ye, J.: Generalized low rank approximations of matrices. Machine Learning 61(1-3), 167–191 (2005)

    Article  MATH  Google Scholar 

  6. Lee, D.D.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  7. Paatero, P.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  8. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52(1), 155–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations through structured initialization. Pattern Recognition 37(11), 2217–2232 (2004)

    Article  Google Scholar 

  10. Palmer, S.E.: Hierarchical structure in perceptual representation. Cognitive Psychology 9(4), 441–474 (1977)

    Article  Google Scholar 

  11. Wachsmuth, E., Oram, M.W., Perrett, D.I.: Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque. Cerebral Cortex 4(5), 509–522 (1994)

    Article  Google Scholar 

  12. Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Annual Review of Neuroscience 19(1), 577–621 (1996)

    Article  Google Scholar 

  13. Laurberg, H.: Uniqueness of non-negative matrix factorization. In: IEEE/SP 14th Workshop on Statistical Signal Processing (SSP 2007), pp. 44–48 (2007)

    Google Scholar 

  14. Chih-Jen, L.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Transactions on Neural Networks 18(6), 1589–1596 (2007)

    Article  Google Scholar 

  15. Finesso, L., Spreij, P.: Approximate nonnegative matrix factorization via alternating minimization. In: Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems, pp. 1–10 (2004)

    Google Scholar 

  16. Gonzalez, E.F., Zhang, Y.: Accelerating the lee-seung algorithm for nonnegative matrix factorization. Department of Computational Applied Mathematics Rice University(CAAM) Houston TX Technical Reports, no. TR05-02, pp. 1–13 (2005)

    Google Scholar 

  17. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Computation 19(10), 2756–2779 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hoyer, P.O., Dayan, P.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MATH  Google Scholar 

  19. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565 (2002)

    Google Scholar 

  20. Paatero, P.: The multilinear enginea table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics 8(4), 854–888 (1999)

    MathSciNet  Google Scholar 

  21. Albright, R., Cox, J., Duling, D., Langville, A.N., Meyer, C.D.: Algorithms, initializations, and convergence for the nonnegative matrix factorization. Matrix (919), 1–18 (2006)

    Google Scholar 

  22. Karvanen, J., Cichocki, A.: Measuring sparseness of noisy signals. In: Fourth International Symposium on Independent Component Analysis and Blind Singal Separation (ICA 2003), pp. 125–130 (2003)

    Google Scholar 

  23. Li, S.Z., Xin Wen, H., Hong Jiang, Z., Qian Sheng, C.: Learning spatially localized, parts-based representation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. 207–212 (2001)

    Google Scholar 

  24. Ding, C.: Orthogonal nonnegative matrix tri-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

    Google Scholar 

  25. Sha, F., Saul, L.K.: Real-time pitch determination of one or more voices by nonnegative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 1233–1240 (2005)

    Google Scholar 

  26. Chen, Z., Cichocki, A.: Nonnegative matrix factorization with temporal smoothness and/or spatial decorrelation constraints. In: Laboratory for Advanced Brain Signal Processing, RIKEN, Tech. Rep. (2005)

    Google Scholar 

  27. Piper, J., Pauca, V.P., Plemmons, R.J., Giffin, M.: Object characterization from spectral data using nonnegative factorization and information theory. In: Proceedings of 2004 AMOS Technical Conference (2004)

    Google Scholar 

  28. Pauca, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spectral data analysis. Linear Algebra and its Applications 416(1), 29–47 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sajda, P., Du, S., Parra, L.: Recovery of constituent spectra using non-negative matrix factorization. In: Proceedings of SPIE, vol. 5207, pp. 321–331 (2003)

    Google Scholar 

  30. Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C., Xiangling, M., Parra, L.C.: Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Transactions on Medical Imaging 23(12), 1453–1465 (2004)

    Article  Google Scholar 

  31. Schmidt, M.N., Laurberg, H.: Nonnegative matrix factorization with gaussian process priors. In: Computational Intelligence and Neuroscience, pp. 1–10 (2008)

    Google Scholar 

  32. Ding, C.H.Q., Tao, L., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)

    Article  Google Scholar 

  33. Tao, L., Ding, C.: The relationships among various nonnegative matrix factorization methods for clustering. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 362–371 (2006)

    Google Scholar 

  34. Buciu, I., Pitas, I.: Application of non-negative and local non negative matrix factorization to facial expression recognition. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 1, pp. 288–291 (2004)

    Google Scholar 

  35. Feng: Local non-negative matrix factorization as a visual representation. In: Proceedings 2nd International Conference on Development and Learning (ICDL 2002), pp. 178–183 (2002)

    Google Scholar 

  36. Pauca, V.P., Shahnaz, F., Berry, M.W., Plemmons, R.J.: Text mining using nonnegative matrix factorizations. In: Proceedings of the SIAM International Conference on Data Mining, vol. 54, pp. 452–456 (2004)

    Google Scholar 

  37. Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J.: Document clustering using nonnegative matrix factorization. Information Processing and Management 42(2), 373–386 (2006)

    Article  MATH  Google Scholar 

  38. Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic music transcription. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 177–180 (2003)

    Google Scholar 

  39. Asari, H., Olsson, R., Pearlmutter, B., Zador, A.: Sparsification for monaural source separation. In: Blind Speech Separation, pp. 387–410 (2007)

    Google Scholar 

  40. Abdallah, S.A., Plumbley, M.D.: Polyphonic music transcription by non-negative sparse coding of power spectra. Audio 510, 10–14 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Z., Zhou, A., Zhang, G. (2012). Non-negative Matrix Factorization: A Short Survey on Methods and Applications. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds) Computational Intelligence and Intelligent Systems. ISICA 2012. Communications in Computer and Information Science, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34289-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34289-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34288-2

  • Online ISBN: 978-3-642-34289-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics