Skip to main content

Meta-evolution Modelling: Beyond Selection/Mutation-Based Models

  • Conference paper
Advanced Methods for Computational Collective Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 457))

  • 1307 Accesses

Abstract

In this position article we argue the need for integrative approach to evolutionary modelling and point out some of the limitations of the traditional selection/mutation-based models. We argue a shift towards fine-grained detailed and integrated evolutionary modelling. Selection/mutation-based models are limited and do not provide a sufficient depth to provide reductionists insights into the emergence of (biological) evolutionary mechanisms. We propose that selection/mutation should be augmented with explicit hierarchical evolutionary models. We discuss limitations of the selection/mutation models, and we argue the need for detailed integrated modelling approach that goes beyond selection/mutation. We propose our own research framework based on computational meta-evolutionary approach, called Evolvable Virtual Machines (EVM) to address some of the challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adami, C.: Introduction to Artificial Life, 1st edn. Springer (July 30, 1999)

    Google Scholar 

  2. Hutter, M.: The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science 13(3), 431–443 (2002), http://citeseer.ist.psu.edu/hutter02fastest.html , http://arxiv.org/abs/cs.CC/0206022

  3. Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

    Google Scholar 

  4. Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)

    Google Scholar 

  5. Margulis, L.: Symbiosis in Cell Evolution. Freeman & Co., San Francisco (1981)

    Google Scholar 

  6. Margulis, L., Sagan, D.: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Summit Books, New York (1986)

    Google Scholar 

  7. Mattick, J.S., Gagen, M.J.: The evolution of controlled multitasked gene networks: The role of introns and other noncoding rnas in the development of complex organisms. Molecular Biology and Evolution 18(9), 1611–1630 (2001)

    Article  Google Scholar 

  8. Mereschkowsky, K.S.: Ueber ber natur und ursprung der chromatophoren im pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)

    Google Scholar 

  9. Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in complex system. Journal of Biological Physics and Chemistry 10 (2010)

    Google Scholar 

  10. Frontiers in population biology. Tech. Rep. biorpt1098, National Science Foundation (NSF), USA, Rutgers University (October 1998), http://www.nsf.gov/pubs/reports/frontiers_population_bio_disclaimer.pdf

  11. Frontiers in evolutionary research. Tech. Rep. biorpt080706, National Science Foundation, Rutgers University (March 2005), http://www.nsf.gov/pubs/reports/frontiers_evolution_bio.pdf

  12. Nowostawski, M.: Evolvable Virtual Machines. Ph.D. thesis, Information Science Department, University of Otago, Dunedin, New Zealand (December 2008)

    Google Scholar 

  13. Nowostawski, M., Epiney, L., Purvis, M.: Self-adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 46–60. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Nowostawski, M., Purvis, M.K.: Engineering Self-Organising Systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 176–191. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Ofria, C., Wilke, C.O.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)

    Article  Google Scholar 

  16. Olsson, R.: Inductive functional programming using incremental program transformation. Artificial Intelligence 74(1), 55–81 (1995), http://www.ia-stud.hiof.no/~rolando/art_int_paper_74.ps

    Google Scholar 

  17. Ray, T.S.: An approach to the synthesis of life. In: Langton, C., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. XI, pp. 371–408. Addison-Wesley, Redwood City (1991)

    Google Scholar 

  18. Ray, T.S.: Is it alive, or is it GA? In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 1991 International Conference on Genetic Algorithms, pp. 527–534. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  19. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998), http://link.springer.de/link/service/series/0558/papers/1391/13910083.pdf

    Chapter  Google Scholar 

  20. Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal computable predictions (2002), http://citeseer.ist.psu.edu/schmidhuber02speed.html

  21. Schmidhuber, J.: Self-referential learning, or on learning how to learn: The meta-meta-... hook. Diploma thesis, Institut fuer Informatik, Technische Universitaet Muenchen (1987), http://www.idsia.ch/~juergen/diploma.html

  22. Schmidhuber, J.: Optimal ordered problem solver. Tech. Rep. IDSIA-12-02, IDSIA (July 31, 2002), ftp://ftp.idsia.ch/pub/juergen/oops.ps.gz

  23. Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)

    Article  MATH  Google Scholar 

  24. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002)

    Article  MATH  Google Scholar 

  25. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  26. Wallin, I.: Symbionticism and the Origin of Species. Williams & Wilkins, Baltimore (1927)

    Book  Google Scholar 

  27. Wolfram, S.: A New Kind of Science, 1st edn. Wolfram Media, Inc. (May 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Nowostawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowostawski, M. (2013). Meta-evolution Modelling: Beyond Selection/Mutation-Based Models. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, GS. (eds) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34300-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34300-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34299-8

  • Online ISBN: 978-3-642-34300-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics