Abstract
In this position article we argue the need for integrative approach to evolutionary modelling and point out some of the limitations of the traditional selection/mutation-based models. We argue a shift towards fine-grained detailed and integrated evolutionary modelling. Selection/mutation-based models are limited and do not provide a sufficient depth to provide reductionists insights into the emergence of (biological) evolutionary mechanisms. We propose that selection/mutation should be augmented with explicit hierarchical evolutionary models. We discuss limitations of the selection/mutation models, and we argue the need for detailed integrated modelling approach that goes beyond selection/mutation. We propose our own research framework based on computational meta-evolutionary approach, called Evolvable Virtual Machines (EVM) to address some of the challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adami, C.: Introduction to Artificial Life, 1st edn. Springer (July 30, 1999)
Hutter, M.: The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science 13(3), 431–443 (2002), http://citeseer.ist.psu.edu/hutter02fastest.html , http://arxiv.org/abs/cs.CC/0206022
Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)
Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)
Margulis, L.: Symbiosis in Cell Evolution. Freeman & Co., San Francisco (1981)
Margulis, L., Sagan, D.: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Summit Books, New York (1986)
Mattick, J.S., Gagen, M.J.: The evolution of controlled multitasked gene networks: The role of introns and other noncoding rnas in the development of complex organisms. Molecular Biology and Evolution 18(9), 1611–1630 (2001)
Mereschkowsky, K.S.: Ueber ber natur und ursprung der chromatophoren im pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)
Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in complex system. Journal of Biological Physics and Chemistry 10 (2010)
Frontiers in population biology. Tech. Rep. biorpt1098, National Science Foundation (NSF), USA, Rutgers University (October 1998), http://www.nsf.gov/pubs/reports/frontiers_population_bio_disclaimer.pdf
Frontiers in evolutionary research. Tech. Rep. biorpt080706, National Science Foundation, Rutgers University (March 2005), http://www.nsf.gov/pubs/reports/frontiers_evolution_bio.pdf
Nowostawski, M.: Evolvable Virtual Machines. Ph.D. thesis, Information Science Department, University of Otago, Dunedin, New Zealand (December 2008)
Nowostawski, M., Epiney, L., Purvis, M.: Self-adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 46–60. Springer, Heidelberg (2006)
Nowostawski, M., Purvis, M.K.: Engineering Self-Organising Systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 176–191. Springer, Heidelberg (2007)
Ofria, C., Wilke, C.O.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)
Olsson, R.: Inductive functional programming using incremental program transformation. Artificial Intelligence 74(1), 55–81 (1995), http://www.ia-stud.hiof.no/~rolando/art_int_paper_74.ps
Ray, T.S.: An approach to the synthesis of life. In: Langton, C., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. XI, pp. 371–408. Addison-Wesley, Redwood City (1991)
Ray, T.S.: Is it alive, or is it GA? In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 1991 International Conference on Genetic Algorithms, pp. 527–534. Morgan Kaufmann, San Mateo (1991)
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998), http://link.springer.de/link/service/series/0558/papers/1391/13910083.pdf
Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal computable predictions (2002), http://citeseer.ist.psu.edu/schmidhuber02speed.html
Schmidhuber, J.: Self-referential learning, or on learning how to learn: The meta-meta-... hook. Diploma thesis, Institut fuer Informatik, Technische Universitaet Muenchen (1987), http://www.idsia.ch/~juergen/diploma.html
Schmidhuber, J.: Optimal ordered problem solver. Tech. Rep. IDSIA-12-02, IDSIA (July 31, 2002), ftp://ftp.idsia.ch/pub/juergen/oops.ps.gz
Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)
Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002)
Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)
Wallin, I.: Symbionticism and the Origin of Species. Williams & Wilkins, Baltimore (1927)
Wolfram, S.: A New Kind of Science, 1st edn. Wolfram Media, Inc. (May 2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nowostawski, M. (2013). Meta-evolution Modelling: Beyond Selection/Mutation-Based Models. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, GS. (eds) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34300-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-34300-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34299-8
Online ISBN: 978-3-642-34300-1
eBook Packages: EngineeringEngineering (R0)