Abstract
This paper is devoted to the numerical treatment of time fractional diffusion equation with Neumann boundary conditions. A compact difference scheme is derived for solving this problem, by combining the classic finite difference method for Caputo derivative in time, the second order central difference method in space and the compact difference treatment for Neumann boundary conditions. The solvability, stability and convergence of this scheme are rigorously discussed. We prove that the convergence order of this proposed scheme is O(τ2 − α + h2), where τ, α and h are the time step size, the index of fractional derivative and space step size respectively. Numerical experiments are carried out to demonstrate the theoretical analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2006)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2006)
Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finace. III, The diffusion limit. In: Mathematical Finance. Trends in Math., pp. 171–180. Birkhäuser, Basel (2001)
Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynam. 29, 129–143 (2002)
Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)
Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)
Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional differential equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E), 488–504 (2005)
Mainardi, F.: Fractional calculus: Some basicproblems in continuum and statisticalmechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)
Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370, 114–118 (2006)
Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: An empirical study. Phys. A 314, 749–755 (2002)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivative: theory and applications. Gordon and Breach, New York (1993)
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Sun, Z.Z.: Compact difference schemes for heat equation with Neumann boundary conditions. Numer. Meth. Part. D. E. 25, 1320–1341 (2009)
Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)
Zhao, J., Dai, W.Z., Niu, T.C.: Fourth-order compact schemes of a heat conduction problem with Neumann boundary conditions. Numer. Meth. Part. D. E. 23, 949–959 (2007)
Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, J., Tang, Y., Wang, W., Yang, J. (2012). A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions. In: Xiao, T., Zhang, L., Fei, M. (eds) AsiaSim 2012. AsiaSim 2012. Communications in Computer and Information Science, vol 323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34384-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-34384-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34383-4
Online ISBN: 978-3-642-34384-1
eBook Packages: Computer ScienceComputer Science (R0)