Skip to main content

A Volume Compression Scheme Based on Block Division with Fast Cubic B-spline Evaluation

  • Conference paper
AsiaSim 2012 (AsiaSim 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 325))

Included in the following conference series:

Abstract

Nowadays, even though the GPU could keep up with the growing amount of volume data by boosting computation performance, the transfer bandwidth between different hardware may become insufficient especially for rendering the high-resolution volume data, which results in an important problem. This problem becomes even more conspicuous for the time-varying volume data. To overcome this bottleneck, we propose a volume compression scheme that employs tetrahedral cells generated at each sub-volume. The sub-volume is defined by applying a blocking operation to an original volume with a block size. Additional vertices at the tetrahedral cells are calculated by using the fast cubic b-spline evaluation function calculated from the original volume. We confirm the effectiveness of our compression scheme by applying it to a volume dataset which is composed of 480×720×120×122 voxels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolationand digital filtering. IEEE Trans. Acoust., Speech, and Signal Processing 26, 852–864 (1978)

    Google Scholar 

  2. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I-theory. IEEE Trans. Signal Processing 41, 821–832 (1993)

    Article  MATH  Google Scholar 

  3. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part II-efficient design and applications. IEEE Trans. Signal Processing 41, 834–848 (1993)

    Article  MATH  Google Scholar 

  4. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 16, 22–38 (1999)

    Article  Google Scholar 

  5. Wu, Q., Bajaj, C.L.: B-spline Representation for Volume Reconstruction. Techinical Report, Institute of Computational Engineering and sciences, The University of Texas at Austin (2003)

    Google Scholar 

  6. Bajaj, C., Xu, G., Zhang, Q.: Bio-Molecule Surfaces Construction Via a Higher-Order Level Set Method. Journal of Computer Science and Technology 23(6), 1026–1036 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bajaj, C.L., Xu, G., Zhang, Q.: Smooth surface constructions via a higher-order level-set method. ICES Report 06-18, Institute for Computational and Engineering Sciences, The University of Texas at Austin (2006)

    Google Scholar 

  8. Kawamura, T., Sakamoto, N., Koyamada, K.: A Level-of-Detail Rendering of a Large-Scale Irregular Volume Dataset Using Particles. Journal of Computer Science and Technology 25(5), 905–915 (2010)

    Article  Google Scholar 

  9. Sabella, P.: A Rendering Algorithm for Visualizing 3D Scalar Fields. Computer Graphics 22(4), 51–58 (1988)

    Article  Google Scholar 

  10. Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: Proceedings of IEEE Visualization, pp. 287–292 (2003)

    Google Scholar 

  11. Ma, K.-L.: Visualizing time-varying volume data. Computing in Science and Engineering 5(2), 34–42 (2003)

    Article  Google Scholar 

  12. Schnerder, J., Westermann, R.: Compression domain volume rendering. In: Proceedings of IEEE Visualization, pp. 293–300 (2003)

    Google Scholar 

  13. Mensmann, J., Ropinski, T., Hinrichs, K.: A GPU-Supported Lossless Compression Scheme for Rendering Time-Varying Volume Data. Volume Graphics Eurographics Association, 109–116 (2010)

    Google Scholar 

  14. Sohn, B.-S.: Topology Preserving Tetrahedral Decomposition of Trilinear Cell. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 350–357. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Yuusuke, T., Shuhei, K., Seiji, I., Shin, I., Shinji, K., Kazuyuki, K., Kyoko, H., Susumu, N., Satoshi, T.: Data Fitting Independent of Grid Structure Using A Volumic Version of MPU. Journal of Visualization 14(2), 161–170 (2011)

    Article  Google Scholar 

  16. Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: An Flexible Framework for Visualizing Unstructured Grids with Time-varying Scalar Fields. Parallel Computing 33(6), 391–405 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, K., Sakamoto, N., Koyamada, K. (2012). A Volume Compression Scheme Based on Block Division with Fast Cubic B-spline Evaluation. In: Xiao, T., Zhang, L., Fei, M. (eds) AsiaSim 2012. AsiaSim 2012. Communications in Computer and Information Science, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34387-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34387-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34386-5

  • Online ISBN: 978-3-642-34387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics