Abstract
A promising approach to tackle intractable problems is given by a combination of decomposition methods with dynamic algorithms. One such decomposition concept is tree decomposition. However, several heuristics for obtaining a tree decomposition exist and, moreover, also the subsequent dynamic algorithm can be laid out differently. In this paper, we provide an experimental evaluation of this combined approach when applied to reasoning problems in propositional answer set programming. More specifically, we analyze the performance of three different heuristics and two different dynamic algorithms, an existing standard version and a recently proposed algorithm based on a more involved data structure, but which provides better theoretical runtime. The results suggest that a suitable combination of the tree decomposition heuristics and the dynamic algorithm has to be chosen carefully. In particular, we observed that the performance of the dynamic algorithm highly depends on certain features (besides treewidth) of the provided tree decomposition. Based on this observation we apply supervised machine learning techniques to automatically select the dynamic algorithm depending on the features of the input tree decomposition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Bachoore, E.H., Bodlaender, H.L.: A Branch and Bound Algorithm for Exact, Upper, and Lower Bounds on Treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)
Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI Commun. 24(2), 147–164 (2011)
Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12, 53–87 (1994)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–22 (1993)
Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper Bounds. Inf. Comput. 208(3), 259–275 (2010)
Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.: Heuristic Methods for Hypertree Decomposition. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A Portfolio Solver for Answer Set Programming: Preliminary Report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer, Heidelberg (2011)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proc. UAI 2004, pp. 201–208. AUAI Press (2004)
Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. In: Proc. AAAI 2006, pp. 250–256. AAAI Press (2006)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)
Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. In: Proc. ACSC 1998, pp. 181–191. Springer (1998)
Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth. In: Proc. IJCAI 2009, pp. 816–822. AAAI Press (2009)
Kloks, T.: Treewidth, computations and approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Koster, A., van Hoesel, S., Kolen, A.: Solving partial constraint satisfaction problems with tree-decomposition. Networks 40(3), 170–180 (2002)
Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 50, 157–224 (1988)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)
Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer (1999)
Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S.: A new tree-decomposition based algorithm for answer set programming. In: Proc. ICTAI, pp. 916–918 (2011)
Morak, M., Pichler, R., Rümmele, S., Woltran, S.: A Dynamic-Programming Based ASP-Solver. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 369–372. Springer, Heidelberg (2010)
Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)
Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, pp. 343–348 (1992)
Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Journal Algorithms 7, 309–322 (1986)
Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)
Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. AAAI 1997, pp. 185–190. AAAI Press/The MIT Press (1997)
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1) (2008)
Tarjan, R., Yannakakis, M.: Simple linear-time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)
Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: Poster Papers of the 9th European Conference on Machine Learning (1997)
Zhao, Y., Lin, F.: Answer Set Programming Phase Transition: A Study on Randomly Generated Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 239–253. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S. (2012). Evaluating Tree-Decomposition Based Algorithms for Answer Set Programming. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-34413-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34412-1
Online ISBN: 978-3-642-34413-8
eBook Packages: Computer ScienceComputer Science (R0)