Skip to main content

Automatically Configuring Algorithms for Scaling Performance

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

  • 2105 Accesses

Abstract

Automated algorithm configurators have been shown to be very effective for finding good configurations of high performance algorithms for a broad range of computationally hard problems. As we show in this work, the standard protocol for using these configurators is not always effective. We propose a simple and computationally inexpensive modification to this protocol and apply it to state-of-the-art solvers for two prominent problems, TSP and computer Go playing, where the standard protocol is unable or unlikely to yield performance improvements, and one problem, mixed integer programming, where the standard protocol is known to be effective. We show that our new protocol is able to find configurations between 4% and 180% better than the standard protocol within the same time budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fuego, http://fuego.sourceforge.net/ (version visited last in October 2011)

  2. IBM ILOG CPLEX optimizer, http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (version visited last in October 2011)

  3. Ahmadizadeh, K., Dilkina, B., Gomes, C.P., Sabharwal, A.: An Empirical Study of Optimization for Maximizing Diffusion in Networks. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 514–521. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Ansótegui, C., Sellmann, M., Tierney, K.: A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.J.: Concorde TSP solver, http://www.tsp.gatech.edu/concorde.html (version visited last in October 2011)

  6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO 2002, pp. 11–18 (2002)

    Google Scholar 

  7. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)

    Google Scholar 

  8. Chiarandini, M., Fawcett, C., Hoos, H.H.: A modular multiphase heuristic solver for post enrolment course timetabling. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling, Montréal, pp. 1–6 (2008)

    Google Scholar 

  9. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego - an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Transactions on Computational Intelligence and AI in Games 2, 259–270 (2010), Special issue on Monte Carlo Techniques and Computer Go

    Article  Google Scholar 

  10. Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in Networks: A Hybrid Approach. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research 126, 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated Configuration of Mixed Integer Programming Solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization for General Algorithm Configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)

    MATH  Google Scholar 

  15. Reinelt, G.: TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95 (version visited last in October 2011)

  16. Tompkins, D.A.D., Hoos, H.H.: Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 278–292. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence, IJCAI (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Styles, J., Hoos, H.H., Müller, M. (2012). Automatically Configuring Algorithms for Scaling Performance. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics