Abstract
Automated algorithm configurators have been shown to be very effective for finding good configurations of high performance algorithms for a broad range of computationally hard problems. As we show in this work, the standard protocol for using these configurators is not always effective. We propose a simple and computationally inexpensive modification to this protocol and apply it to state-of-the-art solvers for two prominent problems, TSP and computer Go playing, where the standard protocol is unable or unlikely to yield performance improvements, and one problem, mixed integer programming, where the standard protocol is known to be effective. We show that our new protocol is able to find configurations between 4% and 180% better than the standard protocol within the same time budget.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fuego, http://fuego.sourceforge.net/ (version visited last in October 2011)
IBM ILOG CPLEX optimizer, http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (version visited last in October 2011)
Ahmadizadeh, K., Dilkina, B., Gomes, C.P., Sabharwal, A.: An Empirical Study of Optimization for Maximizing Diffusion in Networks. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 514–521. Springer, Heidelberg (2010)
Ansótegui, C., Sellmann, M., Tierney, K.: A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)
Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.J.: Concorde TSP solver, http://www.tsp.gatech.edu/concorde.html (version visited last in October 2011)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO 2002, pp. 11–18 (2002)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)
Chiarandini, M., Fawcett, C., Hoos, H.H.: A modular multiphase heuristic solver for post enrolment course timetabling. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling, Montréal, pp. 1–6 (2008)
Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego - an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Transactions on Computational Intelligence and AI in Games 2, 259–270 (2010), Special issue on Monte Carlo Techniques and Computer Go
Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in Networks: A Hybrid Approach. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)
Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research 126, 106–130 (2000)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated Configuration of Mixed Integer Programming Solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization for General Algorithm Configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)
Reinelt, G.: TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95 (version visited last in October 2011)
Tompkins, D.A.D., Hoos, H.H.: Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 278–292. Springer, Heidelberg (2010)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence, IJCAI (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Styles, J., Hoos, H.H., Müller, M. (2012). Automatically Configuring Algorithms for Scaling Performance. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-34413-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34412-1
Online ISBN: 978-3-642-34413-8
eBook Packages: Computer ScienceComputer Science (R0)