Abstract
HyFlex (Hyper-heuristic Flexible framework) [15] is a software framework enabling the development of domain independent search heuristics (hyper-heuristics), and testing across multiple problem domains. This framework was used as a base for the first Cross-domain Heuristic Search Challenge, a research competition that attracted significant international attention. In this paper, we present one of the problems that was used as a hidden domain in the competition, namely, the capacitated vehicle routing problem with time windows. The domain implements a data structure and objective function for the vehicle routing problem, as well as many state-of- the-art low-level heuristics (search operators) of several types. The domain is tested using two adaptive variants of a multiple-neighborhood iterated local search algorithm that operate in a domain independent fashion, and therefore can be considered as hyper-heuristics. Our results confirm that adding adaptation mechanisms improve the performance of hyper-heuristics. It is our hope that this new and challenging problem domain can be used to promote research within hyper-heuristics, adaptive operator selection, adaptive multi-meme algorithms and autonomous control for search algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baxter, J.: Local optima avoidance in depot location. Journal of the Operational Research Society 32, 815–819 (1981)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Braysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route construction and local search algorithms. Transportation Science (2005)
Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J.A., Gendreau, M.: Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, pp. 3073–3080 (July 2010)
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes, A.J., Petrovic, S.: The Cross-Domain Heuristic Search Challenge – An International Research Competition. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 631–634. Springer, Heidelberg (2011)
Burke, E.K., Gendreau, M., Ochoa, G., Walker, J.D.: Adaptive iterated local search for cross-domain optimisation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1987–1994. ACM, New York (2011)
Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: A Classification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, ch. 15, pp. 449–468. Springer (2010)
Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme Value Based Adaptive Operator Selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)
Gendreau, M., Hertz, A., Laporte, G.: A new insertion and postoptimization procedures for the traveling salesman problem. Operations Research (1992)
Lourenco, H.R., Martin, O., Stutzle, T.: Iterated Local Search, pp. 321–353. Kluwer Academic Publishers, Dordrecht (2002)
Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Operations Research Letters 11(4), 219–224 (1992)
Ochoa, G., Hyde, M.: The Cross-domain Heuristic Search Challenge, CHeSC 2011 (2011), http://www.asap.cs.nott.ac.uk/external/chesc2011/
Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)
Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. PhD thesis, Northwestern University, Evanston, IL (1976)
Potvin, J.-Y., Rousseau, J.-M.: An exchange heuristic for routeing problems with time windows. The Journal of the Operational Research Society (1995)
Savelsbergh, M.W.P.: The vehicle routing problem with time windows: Minimizing route duration. Informs Journal on Computing 4(2), 146–154 (1992)
Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics (2000)
SINTEF. VRPTW benchmark problems, on the SINTEF transport optimisation portal (2011), http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/
Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1539–1546. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K. (2012). Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-34413-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34412-1
Online ISBN: 978-3-642-34413-8
eBook Packages: Computer ScienceComputer Science (R0)