Abstract
Sequential sampling strategies based on Gaussian processes are now widely used for the optimization of problems involving costly simulations. But Gaussian processes can also generate parallel optimization strategies. We focus here on a new, parameter free, parallel expected improvement criterion for asynchronous optimization. An estimation of the criterion, which mixes Monte Carlo sampling and analytical bounds, is proposed. Logarithmic speed-ups are measured on 1 and 9 dimensional functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berbecea, A.C., Kreuawan, S., Gillon, F., Brochet, P.: A Parallel Multiobjective Efficient Global Optimization: The Finite Element Method in Optimal Design and Model Development. IEEE Transactions on Magnetics 46(8), 2868–2871 (2010)
Branke, J., Kamper, A., Schmeck, H.: Distribution of Evolutionary Algorithms in Heterogeneous Networks. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 923–934. Springer, Heidelberg (2004)
Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. Springer series in Evolutionary Learning and Optimization, pp. 131–162 (2009)
Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel Gaussian Process based global optimization. HAL technical report no. hal-00507632 (July 2010), http://hal.archives-ouvertes.fr/hal-00507632/
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
Kolda, T.G.: Revisiting asynchronous parallel pattern search for nonlinear optimization. SIAM J. Optimization 16(2), 563–586 (2005)
Janusevskis, J., Le Riche, R., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. HAL technical report no. hal-00613971 (August 2011), http://hal.archives-ouvertes.fr/hal-00613971_v1
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)
Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. European J. of Operational Research 182, 514–535 (2007)
Sobester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high fidelity computer simulations. J. of Structural and Multidisciplinary Optimization 27, 371–383 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R. (2012). Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-34413-8_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34412-1
Online ISBN: 978-3-642-34413-8
eBook Packages: Computer ScienceComputer Science (R0)