Abstract
Cluster in graphs is densely connected group of vertices sparsely connected to other groups. Hence, for prediction of a future link between a pair of vertices, these vertices common neighbors may play different roles depending on if they belong or not to the same cluster. Based on that, we propose a new measure (WIC) for link prediction between a pair of vertices considering the sets of their intra-cluster or within-cluster (W) and between-cluster or inter-cluster (IC) common neighbors. Also, we propose a set of measures, referred to as W forms, using only the set given by the within-cluster common neighbors instead of using the set of all common neighbors as usually considered in the basic local similarity measures. Consequently, a previous clustering scheme must be applied on the graph. Using three different clustering algorithms, we compared WIC measure with ten basic local similarity measures and their counterpart W forms on ten real networks. Our analyses suggest that clustering information, no matter the clustering algorithm used, improves link prediction accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackland, R.: Mapping the US political blogosphere: Are conservative bloggers more prominent? Presentation to BlogTalk, Downunder, Sydney (2005)
Batageli, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/mix/usair97.net
Bertini, J., Lopes, A., Zhao, L.: Partially labeled data stream classification with the semi-supervised K-associated graph. Journal of the Brazilian Computer Society, 1–12 (2012)
Bertini, J., Zhao, L., Motta, R., Lopes, A.: A nonparametric classification method based on k-associated graphs. Information Sciences 181(24), 5435–5456 (2011)
Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: ICML, pp. 19–26 (2001)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)
Fawcett, T., Provost, F.: Activity monitoring: Noticing interesting changes in behavior. In: Proc. of the Fifth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 53–62 (1999)
Feng, X., Zhao, J.C., Xu, K.: Link prediction in complex networks: a clustering perspective. Eur. Phys. J. B 85(1-3) (2012)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)
Laguna, V., Lopes, A.: Combining local and global knn with cotraining. In: ECAI 2010 - 19th European Conference on Artificial Intelligence, vol. 215, pp. 815–820. IOS Press, Netherlands (2010)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. JASIST 58(7), 1019–1031 (2007)
Lichtenwalter, R.N., Chawla, N.V.: Lpmade: Link prediction made easy. JMLR 12, 2489–2492 (2011)
Liu, Z., Zhang, Q.-M., Lü, L., Zhou, T.: Link prediction in complex networks: A local naive bayes model. EPL 96(48007) (2011)
Lopes, A.A., Bertini Jr., J.R., Motta, R., Zhao, L.: Classification Based on the Optimal K-Associated Network. In: Zhou, J. (ed.) Complex 2009. LNICST, vol. 4, pp. 1167–1177. Springer, Heidelberg (2009)
Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. Journal of Mathematical Sociology 1, 49–80 (1971)
Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)
Lu, Q., Getoor, L.: Link-based classification. In: ICML, pp. 496–503 (2003)
Motta, R., de Andrade Lopes, A., de Oliveira, M.C.F.: Centrality Measures from Complex Networks in Active Learning. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 184–196. Springer, Heidelberg (2009)
Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: KDD, pp. 625–630 (2003)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review (45), 167–256 (2003)
Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)
Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. PNAS 101(9), 2658 (2004)
Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with rocketfuel. IEEE/ACM Transactions on Networking 12(1), 2–16 (2004)
von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)
Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)
Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4), 452–473 (1977)
Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valverde-Rebaza, J.C., de Andrade Lopes, A. (2012). Link Prediction in Complex Networks Based on Cluster Information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-34459-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34458-9
Online ISBN: 978-3-642-34459-6
eBook Packages: Computer ScienceComputer Science (R0)