Abstract
This paper proposes a new method for content-based image retrieval that uses a computational model of visual attention and genetic algorithm to find a given object in a set of images with different backgrounds. This method is composed by three main modules: a visual attention model that is quite robust against affine transformations; a color-based schematic representation of visual information; and a genetic algorithm that optimizes several parameters of the visual attention model in order to focus the attention mechanism on those regions of the image where it is most likely that a given object is present. The proposed method is validated through several experiments, and these experiments show that it can find the images that contain the sought object as well as the position and scale of the object in these images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Connor, C.E., Egeth, H.E., Yantis, S.: Visual attention: Bottom-up versus top-down. Current Biology 14(19), 850–852 (2004)
Daugman, J.G.: Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech, and Signal Processing 36(7), 1169–1179 (1988)
Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual Reviews Neuroscience 18(1), 193–222 (1995)
Draper, B.A., Lionelle, A.: Evaluation of selective attention under similarity transformations. Computer Vision and Image Understanding 100(1), 152–171 (2005)
Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color Angular Indexing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 16–27. Springer, Heidelberg (1996)
Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-directed Search. Ph.D. dissertation, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany (January 2006)
Frintrop, S., Jensfelt, P.: Attentional landmarks and active gaze control for visual SLAM. IEEE Trans. Robotics, Special Issue on Visual SLAM 24(5) (October 2008)
Fritz, G., Seifert, C., Paletta, L., Bischof, H.: Attentive Object Detection Using an Information Theoretic Saliency Measure. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 29–41. Springer, Heidelberg (2005)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Heinen, M.R., Engel, P.M.: Avaliação de modelos de atenção visual em relação a transformações afins. In: Proc. IV Workshop de Visão Computacional (WVC 2008), Bauru, SP, Brazil (November 2008) (text in Portuguese)
Heinen, M.R., Engel, P.M.: NLOOK: Modelo de atenção visual relativamente insensÃvel a transformações afins. HÃfen 32(62), 270–277 (2008) (text in Portuguese)
Heinen, M.R., Engel, P.M.: Categorização de objetos utilizando atenção visual. In: Anais do IX Congr. Brasileiro de Redes Neurais / Inteligência Computacional (CBRN). p. 5. Sociedade Brasiliera de Redes Neurais (SBRN), Ouro Preto, MG, Brazil (October 2009) (text in Portuguese)
Heinen, M.R., Engel, P.M.: Evaluation of visual attention models under 2d similarity transformations. In: Proc. 24th ACM Symposium on Applied Computing (SAC 2009) – Special Track on Intelligent Robotic Systems, pp. 1156–1160. ACM press, Honolulu (2009)
Heinen, M.R., Engel, P.M.: NLOOK: A computational attention model for robot vision. Journal of the Brazilian Computer Society (JBCS), 3–17 (September 2009)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)
Lee, K.W., Buxton, H., Jianfeng, F.: Cue-guided search: A computational model of selective attention. IEEE Trans. Neural Networks 16(4), 910–924 (2005)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)
Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1996)
da Silva, A.T., Ao, A.X.F., Aes, L.P.M.: Active learning paradigms for cbir systems based on optimum-path forest classification. Pattern Recognition 44(12), 2971–2978 (2011)
da Silva Torres, R., Ao, A.X.F.: Content-based image retrieval: Theory and applications. Journal of Theoretical and Applied Informatics (RITA) 13(2), 161–185 (2006)
Van de Laar, P., Heskes, T., Gielen, S.: Task-dependent learning attention. Neural Networks 10(6), 981–992 (1997)
Witkin, A.P.: Scale-space filtering. In: Proc. Int. Joint Conf. Artificial Intelligence, pp. 1019–1022. Morgan Kaufman, Karlsruhe (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heinen, M.R., Engel, P.M. (2012). Image Retrieval by Content Based on a Visual Attention Model and Genetic Algorithms. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-34459-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34458-9
Online ISBN: 978-3-642-34459-6
eBook Packages: Computer ScienceComputer Science (R0)