Abstract
Time series data is a very common kind of data in many different fields. In particular, unknown frequent pattern discovery is one of the core activities in many time series mining algorithms. Several solutions to pattern discovery have been proposed so far. However, all solutions assume centralized dataset. With increasingly development of network technology distributed data analysis has become popular, raising issues like scalability and cost minimization. Additionally, some scenarios such as mining distributed medical or financial data involves the question of how to preserve data privacy. In this paper, we present a density based pattern discovery algorithm for time series, which is shown to be efficient and privacy-preserving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining: Models and Algorithms. Advances in Database Systems, vol. 34. Springer (2008)
Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: 20th ACM PODS, Santa Barbara, Califonia, pp. 247–255 (May 2001)
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD Conf. on Management of Data, pp. 439–450. ACM Press (May 2000)
Davies, P.L., Fried, R., Gather, U.: Robust signal extraction for on-line monitoring data. Journal of Statistical Planning and Inference 122, 65–78 (2004)
Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Using Convolution to Mine Obscure Periodic Patterns in One Pass. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 605–620. Springer, Heidelberg (2004)
Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: KDD 2002, Edomonton, Alberta, Canada (2002)
Kargupta, H., Park, B.-H., Hershberger, D., Johnson, E.: Collective data mining: A new perspective toward distributed data mining. In: Kargupta, H., Chan, P. (eds.) Advances in Distributed and Parallel Knowledge Discovery, ch. 5, part II, pp. 131–174. AAAI Press / MIT Press, Menlo Park, CA / Cambridge, MA (2000)
Keogh, E., Folias, T.: The UCR Time Series Data Mining archive. Riverside CA. university of california - computer science & engineering department (2002), http://www.cs.ucr.edu/~eamonn/TSDMA/index.html
Keogh, E., Lonardi, S., Chiu, B.: Finding surprising patterns in a time series database in linear time and space. In: KDD 2002, Edmonton, Alberta, Canada, pp. 550–556 (July 2002)
Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems 3(3), 263–286 (2000)
Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: 2nd Works. on Temporal Data Mining, Edmonton, Alberta, Canada (July 2002)
Moerchen, F., Ultsch, A.: Discovering temporal knowledge in multivariate time series. In: GfKl 2004, Dortmund, Germany (2004)
Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD Explorations 4(2), 12–19 (2002)
Prodromidis, A.L., Chan, P.K.: Meta-learning in distributed data mining systems: issues and approaches. In: Kargupta, H., Chan, P. (eds.) Advances in Distributed Data Mining. AAA/MIT Press (2000)
Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proc. Intl. Conf. on Management of Data 2010, SIGMOD 2010, pp. 735–746. ACM, New York (2010)
Saygin, Y., Verykios, V.S., Elmagarmid, A.K.: Privacy preserving association rule mining. In: Reseach Issues in Data Engineering, RIDE (2002)
da Silva, J.C., Klusch, M., Lodi, S., Moro, G.L.: Secure agent-based distributed data clustering. Intl. Journal of Web Intelligence and Agent Systems 4(2) (2006)
Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data based on mdl principle. Machine Learning 58, 269–300 (2005)
Terrovitis, M.: Privacy preservation in the dissemination of location data. SIGKDD Explorations 13(1), 6–18 (2011)
Zhu, Y., Fu, Y., Fu, H.: On Privacy in Time Series Data Mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 479–493. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
da Silva, J.C., Oliveira, G.H.B., Cortes, O.A.C., Klusch, M. (2012). Density-Based Pattern Discovery in Distributed Time Series. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-34459-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34458-9
Online ISBN: 978-3-642-34459-6
eBook Packages: Computer ScienceComputer Science (R0)