Skip to main content

Association of Anti-Histamine Drugs with Brain Tumor

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Included in the following conference series:

  • 3214 Accesses

Abstract

Experimental evidence shows that most tumors express the histamine synthesizing enzyme, L-histidine decarboxylase [1]. These tumor cells trigger sporadic reactions when they come in contact with histamine cells. In order to suppress these reactions, antihistamine drugs are used which competitively block the receptor mediated response of a tumor cell. We describe the effect of antihistamine drugs on the tumor cells, confirming whether these antihistamine drugs tend to increase or rather decrease the development of a brain tumor.

Drug target sites will be analyzed for similar proteins surrounding the brain tumor .These target sites alignment with similar proteins will open up the conserved regions. Protein motifs in the conserved regions that are over expressed and involved in tumor growth will be identified. The proteins identified will be docked with antihistamine drugs. Results will be analyzed by the scoring function of the algorithms. Selection of drug molecules may help us to design an anti neo plastic agent that can be therapeutically targeted to treat brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanina, A.M.: Histamine and cancer pharmacology. Brit. J. Pharm. 161, 755–767 (2010)

    Article  Google Scholar 

  2. Bland, K.I.: Surgical Oncology: Contemporary Principles and Practices, 4th edn. (2001)

    Google Scholar 

  3. Asher, A.: A Primer of Brain Tumors, 5th edn. (2002)

    Google Scholar 

  4. Bruno, B., Francesca: Histamine and Histamine Receptor Antagonists in Cancer Biology. Inflam. Allerg. Drug Targ. 9, 146–157 (2010)

    Google Scholar 

  5. Sander, K., et al.: Histamine H3 Receptor Antagonists Go to Clinics. Biological and Pharmaceutical Bulletin 31, 2163–2181 (2008)

    Article  Google Scholar 

  6. Leurs, R., et al.: Molecular and Biochemical Pharmacology of the Histamine Receptor. Brit. J. Pharm. 157, 14–23 (2009)

    Article  Google Scholar 

  7. Wishar, D.: A Comprehensive Resource for in Silico Drug Discovery and Exploration. Nucl. Acid Research 34 (2006)

    Google Scholar 

  8. Wheeler, D.: BLAST Quick Start. Comparative Genomics, 1st edn. (2007)

    Google Scholar 

  9. Sigrist, C.: PROSITE, a Protein Domain Database for Functional Characterization and Annotation. Nucl. Acids Research 38, 161–166 (2010)

    Article  Google Scholar 

  10. Grinter, Z.: An Inverse Docking Approach for Identifying New Potential Anti-Cancer Targets. J. Molecular Graph. Model. 29, 795–799 (2011)

    Article  Google Scholar 

  11. Chen, Y.Z.: Ligand-Protein Inverse Docking and Its Potential Use in Computer Search of Putative Protein Targets of a Small Molecule. Protein J. 43, 217–226 (2001)

    Article  Google Scholar 

  12. Xiaofeng, L., et al.: Pharm Mapper Server: a Web Server for Potential Drug Target Identification via Pharmacophore Mapping Approach. Nucl. Acid Research 38, 609–614 (2010)

    Article  Google Scholar 

  13. Morris, B.G.M., Olson, A.J.: J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  14. Henikoff, S.: Automated Assembly of Protein Blocks for Database Searching. Nucl. Acids Res. 19(23), 6565–6572, doi:10.1093/nar/19.23.6565. PMC 329220. PMID 1754394

    Google Scholar 

  15. Clustal, W.: FAQs, http://www.ebi.ac.uk/Tools/clustalw2/help.html#color

  16. Concha, L.G.: New Pattern of EGFR Amplification in Glioblastoma and the Relationship of Gene Copy Number with Gene Expression Profile. Nature Modern Pathol. 23, 856–865 (2010)

    Google Scholar 

  17. Sreedhar, A.S.: Heat Shock Proteins in the Regulation of Apoptosis- New Strategies in Tumor Therapy. Elsevier Pharm. Therap. 101, 227–257 (2004)

    Google Scholar 

  18. Rempel, S.A.: Cathepsin B Expression and Localization in Glioma Progression and Invasion. Cancer Res. Dec. 54(23), 6027–6031 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feroz, S., Habib, A., Siddiqua, M., Saleem, S., Shar, N.A., Jafri, A.R. (2012). Association of Anti-Histamine Drugs with Brain Tumor. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics