Skip to main content

Object Recognition Using Sparse Representation of Overcomplete Dictionary

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7666))

Included in the following conference series:

Abstract

Research in computational neuroscience via Functional magnetic resonance imaging (fMRI) argued that recognition of objects in mammalian brain follows a sparse representation of responses to bar-like structures. We considered different scales and orientations of Gabor wavelets to form a dic-tionary. While previous works in the literature used greedy pursuit based meth-ods for sparse coding, this work takes advantage of a locally competitive algo-rithm (LCA) which calculates more regular sparse coefficients by combining the interactions of artificial neurons. Moreover proposed learning algorithm can be implemented in parallel processing which makes it efficient for real-time ap-plications. A synergetic neural network is used to form a prototype template, representing general characteristic of a class. A classification experiment is performed based on multi-template matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20(10), 847–856 (1980)

    Article  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  3. Braccini, C., et al.: A model of the early stages of the human visual system: Functional and topological transformations performed in the peripheral visual field. Biological Cybernetics 44(1), 47–58 (1982)

    Article  MATH  Google Scholar 

  4. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Current Opinion in Neurobiology 12(2), 162–168 (2002)

    Article  Google Scholar 

  5. Kreutz-Delgado, K., et al.: Dictionary Learning Algorithms for Sparse Representation. Neural Computation 15(2), 349–396 (2003)

    Article  MATH  Google Scholar 

  6. Zhu, S.C., et al.: What are textons? International Journal of Computer Vision 62(1-2), 121–143 (2005)

    Article  Google Scholar 

  7. Figueiredo, M.A.T.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1150–1159 (2003)

    Article  Google Scholar 

  8. Wu, Y.N., et al.: Learning Active Basis Model for Object Detection and Recognition. International Journal of Computer Vision 90(2), 198–235 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wu, T., Zhu, S.C.: A Numerical Study of the Bottom-Up and Top-Down Inference Processes in And-Or Graphs. International Journal of Computer Vision 93(2), 226–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, S.S.B., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Review 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mallat, S.G., Zhang, Z.F.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  12. Rozell, C.J., et al.: Sparse Coding via Thresholding and Local Competition in Neural Circuits. Neural Computation 20(10), 2526–2563 (2008)

    Article  MathSciNet  Google Scholar 

  13. Tai Sing, L.: Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10), 959–971 (1996)

    Article  Google Scholar 

  14. Hogg, T., Rees, D., Talhami, H.: Three-dimensional pose from two-dimensional images: a novel approach using synergetic networks. In: IEEE International Conference on Neural Network (1995)

    Google Scholar 

  15. Lee, G.C., Loo, C.K.: Facial pose estimation using modified synergetic computer. In: Second World Congress on Nature and Biologically Inspired Computing, NaBIC (2010)

    Google Scholar 

  16. Wagner, T., et al.: Using a synergetic computer in an industrial classification problem. In: Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms, pp. 206–212 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loo, CK., Memariani, A. (2012). Object Recognition Using Sparse Representation of Overcomplete Dictionary. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics