Skip to main content

Tracking Property of UMDA in Dynamic Environment by Landscape Framework

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7665))

Included in the following conference series:

  • 3216 Accesses

Abstract

In this paper, the landscape framework is used to analysis the tracking performance of univariate marginal distribution algorithm (UMDA) in dynamic environment. A set of stochastic differential equations (SDEs) is used to describe the evolutionary dynamics of the algorithm. The corresponding potential function is constructed from these SDEs. Dynamic mean first passage time, which is a new concept, is defined as the time it takes from an optimum to another in a dynamic environment. This concept can be used to measure the tracking property of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments: A Survey. IEEE Transaction on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  2. Cartwright, H., Tuson, A.: Genetic Algorithms and Flowshop Scheduling: Towards the Development of A Real-time Process Control System. Evolutionary Computing, 277–290 (1994)

    Google Scholar 

  3. Grefenstette, J.J.: Genetic Algorithms for Changing Environments. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, pp. 137–144. Elsevier (1992)

    Google Scholar 

  4. Goldberg, D.E., Smith, R.E.: Nonstationary Function Optimization Using Genetic Algorithm with Dominance and Diploidy. In: Proc. of the 2nd Int. Conf. on Genetic Algorithms, pp. 59–68 (1987)

    Google Scholar 

  5. Branke, J., Kaußler, T., Thomas, K., Christian, S., Hartmut, S.: A Multi-population Approach to Dynamic Optimization Problems. In: Adaptive Computing in Design and Manufacturing, pp. 299–308. Springer (2000)

    Google Scholar 

  6. Oppacher, F., Wineberg, M.: The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 504–510 (1999)

    Google Scholar 

  7. Stanhope, S.A., Daida, J.M.: (1+ 1) Genetic Algorithm Fitness Dynamics in a Changing Environment. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1851–1858. IEEE (1999)

    Google Scholar 

  8. Droste, S.: Analysis of the (1+ 1) EA for a Dynamically Changing Objective Function. HT014601767. University Dortmund (2001)

    Google Scholar 

  9. Droste, S.: Analysis of the (1+ 1) EA for a Dynamically Changing Onemax-variant. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 55–60. IEEE (2002)

    Google Scholar 

  10. Droste, S.: Analysis of the (1+ 1) EA for a Dynamically Bitwise Changing OneMax. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, p. 202. Springer, Heidelberg (2003)

    Google Scholar 

  11. Wright, S.: The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. In: Proc. of the 6th Inter. Congress of Genetics, pp. 356–366 (1932)

    Google Scholar 

  12. Muhlenbein, H., Mahnig, T.: Evolutionary Computation and Wright’s Equation. Theoretical Computer Science 287(1), 145–165 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gonzalez, G., Lozano, J.A., Larranaga, P.: Mathematical Modeling of Discrete Estimation of Distribution Algorithms. In: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, pp. 147–163. Kluwer Academic (2002)

    Google Scholar 

  14. Yin, L., Ao, P.: Existence and Construction of Dynamical Potential in Nonequilibrium Processes without Detailed Balance. Journal of Physics A: Mathematical and General 39, 8593–8601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ao, P.: Potential in Stochastic Differential Equations: Novel Construction. Journal of Physics A: Mathematical and General 30, L25–L30 (2004)

    Google Scholar 

  16. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland (2007)

    Google Scholar 

  17. Mahnig, T., Mulenbein, H.: Optimal Mutation Rate Using Bayesian Priors for Estimation of Distribution Algorithms. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 460–463. Springer, Heidelberg (2001)

    Google Scholar 

  18. Hisashi, H.: The Effectiveness of Mutation Operation in the Case of Estimation of Distribution Algorithms. Biosystems 87, 243–251 (2007)

    Article  Google Scholar 

  19. Gardiner, C.W.: Handbook of Stochastic Processes. Springer (1991)

    Google Scholar 

  20. Mahnig, T., Muhlenbein, H.: Mathematical Analysis of Optimization Methods Using Search Distributions. In: Proceedings of the 2000 Genetic and Evolutionary Computation Conference, pp. 205–208 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, R., Gong, L., Yuan, B., Ao, P., Ren, Q. (2012). Tracking Property of UMDA in Dynamic Environment by Landscape Framework. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics