Skip to main content

Clock Synchronization Protocol Using Resonate-and-Fire Type of Pulse-Coupled Oscillators for Wireless Sensor Networks

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7667))

Included in the following conference series:

  • 3925 Accesses

Abstract

We present a system of pulse-coupled oscillators (PCOs) based on the resonate-and-fire neuron (RFN) model for an application to clock synchronization protocol for wireless sensor networks. Firstly, we show a novel type of PCO derived from the RFN model and its Type I/Type II phase response properties. Secondly, we demonstrate that global phase synchronization in a network of the RFNs as PCOs are robust against transmission delays. Finally, we propose a possible scheme for compensation of transmission delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Springer, Berlin and New York (1984)

    Book  MATH  Google Scholar 

  2. Izhikevich, E.M.: the geometry of excitability and bursting. Dynamical systems in neuroscience. The MIT press (2007)

    Google Scholar 

  3. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: The 3rd International Conference on Embedded Networked Sensor Systems, pp. 142–153 (2005)

    Google Scholar 

  4. Hong, Y.W., Scaglione, A.: A scalable synchronization protocol for large scale sensor networks and its applications. IEEE Journal on Selected Areas in Communications 23, 1085–1099 (2005)

    Article  Google Scholar 

  5. Wang, X.Y., Apsel, A.B.: Pulse coupled oscillator synchronization for low power UWB wireless transceivers. In: The 50th Midwest Symposium on Circuits and Systems, pp. 1524–1527 (2007)

    Google Scholar 

  6. Mutazono, A., Sugano, M., Murata, M.: Evaluation of robustness in time synchronization for sensor networks. Bio-Inspired Models of Network, Information and Computing Systems, 89–92 (2007)

    Google Scholar 

  7. Taniguchi, Y., Wakamiya, N., Murata, M.: A self-organizing communication mechanism using traveling wave phenomena for wireless sensor networks. In: International Symposium on Autonomous Decentralized Systems, pp. 562–570 (2007)

    Google Scholar 

  8. Sanguinetti, L., Tyrrell, A., Morelli, M., Auer, G.: On the performance of biologically-inspired slot synchronization in multicarrier ad hoc networks. In: IEEE Vehicular Technology Conference, pp. 21–25 (2008)

    Google Scholar 

  9. Tyrrell, A., Auer, G., Bettstetter, C.: On the accuracy of firefly synchronization with delays. In: Proc. First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–5 (2008)

    Google Scholar 

  10. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 1645–1662 (1990)

    Google Scholar 

  11. Nishimura, J., Friedman, E.J.: Robust convergence in pulse-coupled oscillators with delays. Physical Review Letters 106, 194101 (2011)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Resonate-and-fire neurons. Neural networks 14, 883–894 (2001)

    Article  Google Scholar 

  13. Izhikevich, E.M.: Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT press (2007)

    Google Scholar 

  14. Miura, K., Okada, M.: Pulse-coupled resonate-and-fire models. Physical Review E 70, 021914 (2004)

    Article  MathSciNet  Google Scholar 

  15. Miura, K., Okada, M.: Globally coupled resonate-and-fire models. Progress of Theoretical Physics Supplement 161, 255–259 (2006)

    Article  Google Scholar 

  16. Nakada, K., Miura, K., Hayashi, H.: Burst synchronization and chaotic phenomena in two strongly coupled resonate-and-fire neurons. International Journal of Bifurcation and Chaos 18, 1249–1259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nakada, K., Miura, K.: Synchronization analysis of resonate-and-fire neuron models with delayed resets. SCIS-ISIS. Kobe, Japan (2012)

    Google Scholar 

  18. Nakada, K., Miura, K., Hayashi, H.: Noise-induced phenomena in a system of two strongly pulse-coupled spiking neurons. In: IUTAM Symposium on 50 years of Chaos, Kyoto, Japan (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakada, K., Miura, K. (2012). Clock Synchronization Protocol Using Resonate-and-Fire Type of Pulse-Coupled Oscillators for Wireless Sensor Networks. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34500-5_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34500-5_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34499-2

  • Online ISBN: 978-3-642-34500-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics