Abstract
Universal Designated Verifier Signature (UDVS) was introduced by Steinfeld et al. in Asiacrypt’03. UDVS allows a signature holder, who has a signature of a signer, to convince a designated verifier that he is in possession of a signer’s signature, while the verifier cannot transfer such conviction to anyone else. In existing designs of UDVS, a secure channel is required between the signer and the signature holder for signature transmission. In this paper, we eliminate that requirement by combining the notions of UDVS and signcryption, and for the first time, propose the notion of universal designated verifier signcryption (UDVSC). We provide formal definitions and a concrete universal designated verifier signcryption scheme in the identity-based setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baek, J., Safavi-Naini, R., Susilo, W.: Universal Designated Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 644–661. Springer, Heidelberg (2005)
Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–582. Springer, Heidelberg (2001)
Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
Cao, F., Cao, Z.: An Identity Based Universal Designated Verifier Signature Scheme Secure in the Standard Model. Journal of Systems and Software 82, 643–649 (2009)
Chen, L., Malone-Lee, J.: Improved Identity-Based Signcryption. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)
Chen, X., Chen, G., Zhang, F., Wei, B., Mu, Y.: Identity-Based Universal Designated Verifier Signature Proof System. International Journal of Network Security 8(1), 52–58 (2009)
Huang, X., Susilo, W., Mu, Y., Wu, W.: Secure Universal Designated Verifier Signature without Random Oracles. Int. J. Inf. Secur. 7, 171–183 (2008)
Huang, X., Susilo, W., Mu, Y., Zhang, F.T.: Short (Identity-Based) Strong Designated Verifier Signature Schemes. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 214–225. Springer, Heidelberg (2006)
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal Designated Verifier Signatures Without Random Oracles or Non-black Box Assumptions. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 63–77. Springer, Heidelberg (2006)
Li, Y., Pang, L., Wang, Y.: Attacks on a Universal Designated Verifier Signature Scheme. In: Proceedings of the Fifth International Conference on Information Assurance and Security, vol. 1, pp. 27–30 (2009)
Ng, C.Y., Susilo, W., Mu, Y.: Universal Designated Multi Verifier Signature Schemes. In: Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems, pp. 305–309. IEEE (2005)
Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13, 361–369 (2000)
Seo, S.H., Hwang, J.Y., Choi, K.Y., Lee, D.H.: Identity-based Universal Designated Multi-Verifiers Signature Schemes. Computer Standards and Interfaces 30, 288–295 (2008)
Shahandashti, S.F., Safavi-Naini, R.: Genric Constructions for Universal Designated-Verifier Signatures and Identity-based Signatures from Standard Signatures. IET Information Security 3(4), 152–176 (2009)
Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003)
Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient Extension of Standard Schnorr/RSA Signatures into Universal Designated-Verifier Signatures. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)
Vergnaud, D.: New Extensions of Pairing-Based Signatures into Universal Designated Verifier Signatures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 58–69. Springer, Heidelberg (2006)
Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)
Zhang, R., Furukawa, J., Imai, H.: Short Signature and Universal Designated Verifier Signature Without Random Oracles. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005)
Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) < < Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tang, F., Lin, C., Ke, P. (2012). Universal Designated Verifier Signcryption. In: Xu, L., Bertino, E., Mu, Y. (eds) Network and System Security. NSS 2012. Lecture Notes in Computer Science, vol 7645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34601-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-34601-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34600-2
Online ISBN: 978-3-642-34601-9
eBook Packages: Computer ScienceComputer Science (R0)