Abstract
Designated verifier signatures (DVS) allow a signer to create a signature whose validity can only be verified by a specific entity chosen by the signer. In addition, the chosen entity, known as the designated verifier, cannot convince any body that the signature is created by the signer. Multi-designated verifiers signatures (MDVS) are a natural extension of DVS in which the signer can choose multiple designated verifiers. DVS and MDVS are useful primitives in electronic voting and contract signing. In this paper, we investigate various aspects of MDVS and make two contributions. Firstly, we revisit the notion of unforgeability under rogue key attack on MDVS. In this attack scenario, a malicious designated verifier tries to forge a signature that passes through the verification of another honest designated verifier. A common counter-measure involves making the knowledge of secret key assumption (KOSK) in which an adversary is required to produce a proof-of-knowledge of the secret key. We strengthened the existing security model to capture this attack and propose a new construction that does not rely on the KOSK assumption. Secondly, we propose a generic construction of strong MDVS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)
Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 390–399. ACM (2006)
Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)
Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
Chang, T.Y.: An ID-Based Multi-Signer Universal Designated Multi-Verifier Signature Scheme. Inf. Comput. 209(7), 1007–1015 (2011)
Chaum, D.: Private Signature and Proof Systems, US Patent 5,493,614 (1996)
Chow, S.S.M.: Identity-Based Strong Multi-Designated Verifiers Signatures. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 257–259. Springer, Heidelberg (2006)
Chow, S.S.M.: Multi-Designated Verifiers Signatures Revisited. I. J. Network Security 7(3), 348–357 (2008)
Coron, J.-S., Patarin, J., Seurin, Y.: The Random Oracle Model and the Ideal Cipher Model Are Equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008)
Desmedt, Y.: Verifier-Designated Signatures. In: CRYPTO Rump Session (2003)
Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient Strong Designated Verifier Signature Schemes without Random Oracle or with Non-Delegatability. Int. J. Inf. Sec. 10(6), 373–385 (2011)
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
Laguillaumie, F., Vergnaud, D.: Designated Verifier Signatures: Anonymity and Efficient Construction from Any Bilinear Map. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005)
Laguillaumie, F., Vergnaud, D.: Multi-Designated Verifiers Signatures. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507. Springer, Heidelberg (2004)
Laguillaumie, F., Vergnaud, D.: Multi-Designated Verifiers Signatures: Anonymity without Encryption. Inf. Process. Lett. 102(2-3), 127–132 (2007)
Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated Verifier Signature: Definition, Framework and New Constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 1191–1200. Springer, Heidelberg (2007)
Ng, C.Y., Susilo, W., Mu, Y.: Universal Designated Multi Verifier Signature Schemes. In: ICPADS (2), pp. 305–309. IEEE Computer Society (2005)
Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)
Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 40–54. Springer, Heidelberg (2004)
Shailaja, G., Kumar, K.P., Saxena, A.: Universal Designated Multi Verifier Signature without Random Oracles. In: Mohanty, S.P., Sahoo, A. (eds.) ICIT, pp. 168–171. IEEE Computer Society (2006)
Shim, K.-A.: Rogue-key Attacks on the Multi-designated Verifiers Signature Scheme. Inf. Process. Lett. 107(2), 83–86 (2008)
Tian, H.: A New Strong Multiple Designated Verifiers Signature for Broadcast Propagation. In: Xhafa, F., Barolli, L., Köppen, M. (eds.) INCoS, pp. 268–274. IEEE (2011)
Tian, H.: A New Strong Multiple Designated Verifiers Signature. IJGUC 3(1), 1–11 (2012)
Vergnaud, D.: New Extensions of Pairing-based Signatures into Universal (Multi) Designated Verifier Signatures. CoRR, abs/0802.1076 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Au, M.H., Yang, G., Susilo, W. (2012). (Strong) Multi-Designated Verifiers Signatures Secure against Rogue Key Attack. In: Xu, L., Bertino, E., Mu, Y. (eds) Network and System Security. NSS 2012. Lecture Notes in Computer Science, vol 7645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34601-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-34601-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34600-2
Online ISBN: 978-3-642-34601-9
eBook Packages: Computer ScienceComputer Science (R0)