Abstract
Given an integer N = pq, which is a product of two primes, it is difficult to determine the prime factors p and q efficiently. However, for the suitable size of a number N, Fermat’s algorithm is one of the most simple method for solving it. In this paper, a method called EPF for estimating the prime factors of a composite number is proposed. We use the technique of continued fractions to output two integers, p E + q E and p E ·q E , which are close to p + q and p·q, respectively. Furthermore, we show that EPF can be adopted to reduce the loop count in Fermat’s algorithm before factoring a composite number. The effect depends on the size of the prime factor. We believe that there are still other applications as well wherein EPF can be used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)
Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)
Blömer, J., May, A.: Low Secret Exponent RSA Revisited. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg (2001)
Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathematical Society 46(2), 203–213 (1999)
Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)
Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998)
Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
Bressoud, D.M.: Factorization and primality testing. Undergraduate Texts in Mathematics. Springer
Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)
Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)
Coppersmith, D., Franklin, M., Patarin, J., Reiter, M.: Low-Exponent RSA with Related Messages. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 1–9. Springer, Heidelberg (1996)
Durfee, G., Nguyen, P.Q.: Cryptanalysis of the RSA Schemes with Short Private Exponent form Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–11. Springer, Heidelberg (2000)
Dujella, A.: Continued fractions and RSA with small private exponent. Tatra Mt. Math. Publ. 29, 101–112 (2004)
Galbraith, S.D., Heneghan, C., McKee, J.F.: Tunable Balancing of RSA. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer, Heidelberg (2005)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford Univ. Press, Cambridge (1960)
Hinek, M.J.: Another Look at Small RSA Exponents. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 82–98. Springer, Heidelberg (2006)
Galbraith, S.D., Heneghan, C., McKee, J.F.: Tunable balancing of RSA. Full version of [14]
Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)
Lai, X.: Justified Security, speaking note. In: Proceeding of 17th Information Security Conference, Taiwan (June 2007)
McKee, J.: Speeding Fermat’s Factoring Method. Math. Comput. 68, 1729–1738 (1999)
Niven, I., Zuckerman, H.S.: An Introduction to the Theory of Numbers. Wiley, Chichester (1991)
Pollard, J.M.: Theorems on factorization and primality testing. Proc. Cambriage Philosophical Soc. 76, 521–528 (1974)
Rivest, R., Shamir, A., Aldeman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the design of Rebalanced-RSA. Technical Report CACR 2005-35, Centre for Applied Cryptographic Research, 2005-35
Sun, H.-M., Yang, C.-T.: RSA with Balanced Short Exponents and Its Application to Entity Authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 199–215. Springer, Heidelberg (2005)
Sun, H.-M., Wu, M.-E., Ting, W.-C., Jason Hinek, M.: Dual RSA and Its Security Analysis. IEEE Trans. Inf. Theory 53(8), 2922–2933 (2007)
Sun, H.-M., Wu, M.-E., Chen, Y.-H.: Estimating the Prime-Factors of an RSA Modulus and an Extension of the Wiener Attack. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 116–128. Springer, Heidelberg (2007)
Sun, H.-M., Yang, W.-C., Laih, C.-S.: On the Design of RSA with Short Secret Exponent. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 150–164. Springer, Heidelberg (1999)
Takagi, T.: Fast RSA-type Cryptosystem Modulo p k q. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)
Vanstone, S.A., Zuccherato, R.J.: Short RSA keys and their generation. J. Cryptol. 8(2), 101–114 (1995)
Verheul, E.R., van Tilborg, H.C.A.: Cryptanalysis of RSA secret exponents. Appl. Algebra Eng. Commun. Comput. 8(5), 425–435 (1997)
Wiener, M.J.: Cryptanalysis of short RSA private exponents. IEEE Trans. Inf. Theory 36(3), 553–559 (1990)
de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Communication and Computing 13, 17–28 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, ME., Tso, R., Sun, HM. (2012). On the Improvement of Fermat Factorization. In: Xu, L., Bertino, E., Mu, Y. (eds) Network and System Security. NSS 2012. Lecture Notes in Computer Science, vol 7645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34601-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-34601-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34600-2
Online ISBN: 978-3-642-34601-9
eBook Packages: Computer ScienceComputer Science (R0)