Skip to main content

Proxy Signature Scheme Based on Isomorphisms of Polynomials

  • Conference paper
Network and System Security (NSS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7645))

Included in the following conference series:

  • 1334 Accesses

Abstract

The proxy signatures are important cryptosystems that are widely adopted in different applications. Most of the proxy signature schemes so far are based on the hardness of integer factoring, discrete logarithm, and/or elliptic curve. However, Shor proved that the emerging quantum computers can solve the problem of prime factorization and discrete logarithm in polynomial-time, which threatens the security of current RSA, ElGamal, ECC, and the proxy signature schemes based on these problems. We propose a novel proxy signature scheme based on the problem of Isomorphism of Polynomials (IP) which belongs to a major category of Multivariate Public Key Cryptography (MPKC). Through security discussion, our scheme can reach the same security level as the signature scheme based on IP problem. The most attractive advantage of our scheme should be its feature to potentially resist the future quantum computing attacks. Our scheme also owns some important properties of proxy signature schemes, such as strong unforgeability, strong identifiability, strong undeniability, secret-key’s dependence, distinguishability, etc. The scheme is implemented in C/C++ programming language, and the performance shows that the scheme is efficient. The parameters we choose can let security level of the scheme up to 286.59.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Awasthi, A., Lal, S.: Proxy Blind Signature Scheme. Transaction on Cryptology 2(1), 5–11 (2005)

    Google Scholar 

  2. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, Department of Computer Science, University of Illinois, Chicago. Springer, Heidelberg (2009)

    Google Scholar 

  3. Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for Delegation of Signing Rights. Journal of Cryptology 25(1), 57–115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouillaguet, C., Faugère, J., Fouque, P., Perret, L.: Differential Algorithms for the Isomorphism of Polynomials Problem (2009) (manuscript), http://eprint.iacr.org/2009/583.pdf

  5. Bulygin, S., Petzoldt, A., Buchmann, J.: Towards Provable Security of the Unbalanced Oil and Vinegar Signature Scheme under Direct Attacks. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 17–32. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 156–167. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Fuchsbauer, G., Pointcheval, D.: Anonymous Proxy Signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-completeness. W.H. Freeman (1979)

    Google Scholar 

  10. Geiselmann, W., Meier, W.: An Attack on the Isomorphisms of Polynomials Problem with One Secret. International Journal of Information Security 2, 59–64 (2003)

    Article  Google Scholar 

  11. Kim, S., Park, S., Won, D.: Proxy Signatures, Revisited. In: Information and Communications Security, pp. 223–232. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures: Delegation of The Power to Sign Messages. IEICE Transactions on Fundamentals, E79-A(9), 1338-1353 (1996)

    Google Scholar 

  13. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures for Delegating Signing Operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48-57. ACM (1996)

    Google Scholar 

  14. Patarin, J., Goubin, L., Courtois, N.T.: Improved Algorithms for Isomorphisms of Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  16. Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One Secret Problem. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 354–370. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Sakumoto, K., Shirai, T., Hiwatari, H.: On Provable Security of UOV and HFE Signature Schemes against Chosen-Message Attack. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levy-dit-Vehel, F., Perret, L.: Polynomial Equivalence Problems. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 235–251. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Zhang, K.: Threshold Proxy Signature Schemes. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 282–290. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, S., Xu, L. (2012). Proxy Signature Scheme Based on Isomorphisms of Polynomials. In: Xu, L., Bertino, E., Mu, Y. (eds) Network and System Security. NSS 2012. Lecture Notes in Computer Science, vol 7645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34601-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34601-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34600-2

  • Online ISBN: 978-3-642-34601-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics