Skip to main content

On the Minimum Degree Up to Local Complementation: Bounds and Complexity

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Included in the following conference series:

  • 992 Accesses

Abstract

The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes.

First, we show that the local minimum degree of the Paley graph of order p is greater than \(\sqrt{p} - \frac{3}{2}\), which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no l-approximation algorithm for this problem for any constant l unless P = NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aschauer, H., Dur, W., Briegel, H.J.: Multiparticle entanglement purification for two-colorable graph states. Physical Review A 71, 012319 (2005)

    Article  Google Scholar 

  2. Beigi, S., Chuang, I., Grassl, M., Shor, P., Zeng, B.: Graph concatenation for quantum codes. Journal of Mathematical Physics 52 (2011)

    Google Scholar 

  3. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of FOCS, pp. 517–526 (2009)

    Google Scholar 

  4. Bazzi, L.M.J., Mitter, S.K.: Some randomized code constructions from group actions. IEEE Transactions on Information Theory 52(7), 3210–3219 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bouchet, A.: Digraph decompositions and eulerian systems. SIAM J. Algebraic Discrete Methods 8, 323–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchet, A.: κ-transformations, local complementations and switching. Cycles and Rays (1990)

    Google Scholar 

  7. Bouchet, A.: Circle graph obstructions. J. Comb. Theory Ser. B 60, 107–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, Q., Wan, D.: A deterministic reduction for the gap minimum distance problem. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 33–38 (2009)

    Google Scholar 

  9. de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum distance of a linear code. IEEE Transactions on Information Theory 49(1), 22–37 (1999); Preliminary version in FOCS 1999

    Article  MathSciNet  Google Scholar 

  11. Høyer, P., Mhalla, M., Perdrix, S.: Resources Required for Preparing Graph States. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 638–649. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Javelle, J., Mhalla, M., Perdrix, S.: New protocols and lower bound for quantum secret sharing with graph states. arXiv:1109.1487 (September 2011)

    Google Scholar 

  13. Joyner, D.: On quadratic residue codes and hyperelliptic curves. ArXiv Mathematics e-prints (September 2006)

    Google Scholar 

  14. Kotzig, A.: Eulerian lines in finite 4-valent graphs and their transformations. In: Colloqium on Graph Theory, pp. 219–230. Academic Press (1968)

    Google Scholar 

  15. Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Colloquia Mathematica Societatis Janos Bolyai, pp. 609–627 (1975)

    Google Scholar 

  16. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical Review A 78, 042309 (2008)

    Article  MathSciNet  Google Scholar 

  17. Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5, 10:1–10:20 (2008)

    Article  MathSciNet  Google Scholar 

  18. Raussendorf, R., Briegel, H.: A one-way quantum computer. Physical Review Letters 86(22), 5188–5191 (2001)

    Article  Google Scholar 

  19. Schmidt, W.M.: Equations over finite fields: an elementary approach, 2nd edn. Kendrick Press (2004)

    Google Scholar 

  20. Severini, S.: Two-colorable graph states with maximal schmidt measure. Physics Letters A 356, 99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem. In: STOC, pp. 92–109 (1997)

    Google Scholar 

  22. Weil, A.: On some exponential sums. Proceedings of the National Academy of Sciences 34, 204–207 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Javelle, J., Mhalla, M., Perdrix, S. (2012). On the Minimum Degree Up to Local Complementation: Bounds and Complexity. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics