Abstract
Finding minimal triangulations of graphs is a well-studied problem with many applications, for instance as first step for efficiently computing graph decompositions in terms of clique separators. Computing a minimal triangulation can be done in O(nm) time and much effort has been invested to improve this time bound for general and special graphs. We propose a recursive algorithm which works for general graphs and runs in linear time if the input is a claw-free graph and the length of its longest path is bounded by a fixed value k. More precisely, our algorithm runs in O(f + km) time if the input is a claw-free graph, where f is the number of fill edges added, and k is the height of the execution tree; we find all the clique minimal separators of the input graph at the same time. Our algorithm can be modified to a robust algorithm which runs within the same time bound: given a non-claw free input, it either triangulates the graph or reports a claw.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the Desirability of Acyclic Database Schemes. Journal of the ACM (JACM) 30(3) (July 1983)
Berry, A.: A wide-range efficient algorithm for minimal triangulation. In: Proceedings of SODA 1999, pp. 860–861 (1999)
Berry, A., Blair, J.R.S., Heggernes, P., Peyton, B.W.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)
Berry, A., Blair, J.R.S., Simonet, G.: Preface to Special issue on Minimal Separation and Minimal Triangulation. Discrete Mathematics 306(3), 293 (2006)
Berry, A., Bordat, J.P.: Separability generalizes Dirac’s theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)
Berry, A., Bordat, J.-P., Heggernes, P., Simonet, G., Villanger, Y.: A wide-range algorithm for minimal triangulation from an arbitrary ordering. Journal of Algorithms 58(1), 33–66 (2006)
Berry, A., Brandstädt, A., Giakoumakis, V., Maffray, F.: The atomic structure of hole- and diamond-free graphs (submitted)
Berry, A., Heggernes, P., Villander, Y.: A vertex incremental approach for maintaining chordality. Discrete Mathematics 306(3), 318–336 (2006)
Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition. Algorithms 3(2), 197–215 (2010)
Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Discrete Applied Mathematics 144(1-2), 27–42 (2004)
Berry, A., Sigayret, A.: A Peep through the Looking Glass: Articulation Points in Lattices. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 45–60. Springer, Heidelberg (2012)
Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem. Theoretical Computer Science 389, 295–306 (2007)
Brandstädt, A., Le, V.B., Mahfud, S.: New applications of clique separator decomposition for the Maximum Weight Stable Set Problem. Theoretical Computer Science 370, 229–239 (2007)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl., Philadelphia, vol. 3 (1999)
Bruhn, H., Saito, A.: Clique or hole in claw-free graphs. Journal of Combinatorial Theory, Series B 102(1), 1–13 (2012)
Chudnovsky, M., Seymour, P.: The Structure of Claw-free Graphs. In: Surveys in Combinatirics 2005. London Math. Soc. Lecture Note Series, vol. 327, pp. 153–171 (2005)
Chudnovsky, M., Seymour, P.: Claw-free Graphs IV. Decomposition theorem. Journal of Combinatorial Theory. Ser. B 98, 839–938 (2008)
Chudnovsky, M., Seymour, P.: Claw-free Graphs V. Global structure. Journal of Combinatorial Theory. Ser. B 98, 1373–1410 (2008)
Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)
Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Proceedings of SODA 2011, pp. 630–646 (2011)
Faenza, Y., Oriolo, G., Stauffer, G.: Solving the maximum weighted stable set problem in claw-free graphs via decomposition (submitted)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)
Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306(3), 297–317 (2006)
Heggernes, P., Telle, J.A., Villanger, Y.: Computing Minimal Triangulations in Time O(n α log n) = o(n 2.376). SIAM Journal on Discrete Mathematics 19(4), 900–913 (2005)
Kloks, T., Kratsch, D., Müller, H.: Finding and Counting Small Induced Subgraphs Efficiently. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 14–23. Springer, Heidelberg (1995)
Kaba, B., Pinet, N., Lelandais, G., Sigayret, A., Berry, A.: Clustering gene expression data using graph separators. In Silico Biology 7(4-5), 433–452 (2007)
Kratsch, D., Spinrad, J.: Minimal fill in O(n 2.69) time. Discrete Mathematics 306(3), 366–371 (2006)
Leimer, H.-G.: Optimal decomposition by clique separators. Discrete Mathematics 113, 99–123 (1993)
Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Meister, D.: Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs. Discrete Applied Mathematics 146(3), 193–218 (2005)
Olesen, K.G., Madsen, A.L.: Maximal prime subgraph decomposition of Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 32(1), 21–31 (2002)
Oriolo, G., Pietropaoli, U., Stauffer, G.: A New Algorithm for the Maximum Weighted Stable Set Problem in Claw-Free Graphs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 77–96. Springer, Heidelberg (2008)
Oriolo, G., Stauffer, G., Ventura, P.: Stable sets in claw-free graphs: recent achievements and future challenges. Optima 86 (2011)
Parra, A., Scheffler, P.: Characterizations and Algorithmic Applications of Chordal Graph Embeddings. Discrete Applied Mathematics 79(1-3), 171–188 (1997)
Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press, NY (1973)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)
Tarjan, R.E.: Decomposition by clique separators. Discrete Mathematics 55, 221–232 (1985)
Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 566–579 (1984)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berry, A., Wagler, A. (2012). Triangulation and Clique Separator Decomposition of Claw-Free Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-34611-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34610-1
Online ISBN: 978-3-642-34611-8
eBook Packages: Computer ScienceComputer Science (R0)