Skip to main content

Triangulation and Clique Separator Decomposition of Claw-Free Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Included in the following conference series:

Abstract

Finding minimal triangulations of graphs is a well-studied problem with many applications, for instance as first step for efficiently computing graph decompositions in terms of clique separators. Computing a minimal triangulation can be done in O(nm) time and much effort has been invested to improve this time bound for general and special graphs. We propose a recursive algorithm which works for general graphs and runs in linear time if the input is a claw-free graph and the length of its longest path is bounded by a fixed value k. More precisely, our algorithm runs in O(f + km) time if the input is a claw-free graph, where f is the number of fill edges added, and k is the height of the execution tree; we find all the clique minimal separators of the input graph at the same time. Our algorithm can be modified to a robust algorithm which runs within the same time bound: given a non-claw free input, it either triangulates the graph or reports a claw.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the Desirability of Acyclic Database Schemes. Journal of the ACM (JACM) 30(3) (July 1983)

    Google Scholar 

  2. Berry, A.: A wide-range efficient algorithm for minimal triangulation. In: Proceedings of SODA 1999, pp. 860–861 (1999)

    Google Scholar 

  3. Berry, A., Blair, J.R.S., Heggernes, P., Peyton, B.W.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A., Blair, J.R.S., Simonet, G.: Preface to Special issue on Minimal Separation and Minimal Triangulation. Discrete Mathematics 306(3), 293 (2006)

    Article  MathSciNet  Google Scholar 

  5. Berry, A., Bordat, J.P.: Separability generalizes Dirac’s theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, A., Bordat, J.-P., Heggernes, P., Simonet, G., Villanger, Y.: A wide-range algorithm for minimal triangulation from an arbitrary ordering. Journal of Algorithms 58(1), 33–66 (2006)

    Article  MathSciNet  Google Scholar 

  7. Berry, A., Brandstädt, A., Giakoumakis, V., Maffray, F.: The atomic structure of hole- and diamond-free graphs (submitted)

    Google Scholar 

  8. Berry, A., Heggernes, P., Villander, Y.: A vertex incremental approach for maintaining chordality. Discrete Mathematics 306(3), 318–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition. Algorithms 3(2), 197–215 (2010)

    Article  MathSciNet  Google Scholar 

  10. Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Discrete Applied Mathematics 144(1-2), 27–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berry, A., Sigayret, A.: A Peep through the Looking Glass: Articulation Points in Lattices. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 45–60. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem. Theoretical Computer Science 389, 295–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandstädt, A., Le, V.B., Mahfud, S.: New applications of clique separator decomposition for the Maximum Weight Stable Set Problem. Theoretical Computer Science 370, 229–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl., Philadelphia, vol. 3 (1999)

    Google Scholar 

  15. Bruhn, H., Saito, A.: Clique or hole in claw-free graphs. Journal of Combinatorial Theory, Series B 102(1), 1–13 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chudnovsky, M., Seymour, P.: The Structure of Claw-free Graphs. In: Surveys in Combinatirics 2005. London Math. Soc. Lecture Note Series, vol. 327, pp. 153–171 (2005)

    Google Scholar 

  17. Chudnovsky, M., Seymour, P.: Claw-free Graphs IV. Decomposition theorem. Journal of Combinatorial Theory. Ser. B 98, 839–938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chudnovsky, M., Seymour, P.: Claw-free Graphs V. Global structure. Journal of Combinatorial Theory. Ser. B 98, 1373–1410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Proceedings of SODA 2011, pp. 630–646 (2011)

    Google Scholar 

  21. Faenza, Y., Oriolo, G., Stauffer, G.: Solving the maximum weighted stable set problem in claw-free graphs via decomposition (submitted)

    Google Scholar 

  22. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)

    Google Scholar 

  23. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306(3), 297–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heggernes, P., Telle, J.A., Villanger, Y.: Computing Minimal Triangulations in Time O(n α log n) = o(n 2.376). SIAM Journal on Discrete Mathematics 19(4), 900–913 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kloks, T., Kratsch, D., Müller, H.: Finding and Counting Small Induced Subgraphs Efficiently. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 14–23. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Kaba, B., Pinet, N., Lelandais, G., Sigayret, A., Berry, A.: Clustering gene expression data using graph separators. In Silico Biology 7(4-5), 433–452 (2007)

    Google Scholar 

  27. Kratsch, D., Spinrad, J.: Minimal fill in O(n 2.69) time. Discrete Mathematics 306(3), 366–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leimer, H.-G.: Optimal decomposition by clique separators. Discrete Mathematics 113, 99–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  30. Meister, D.: Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs. Discrete Applied Mathematics 146(3), 193–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Olesen, K.G., Madsen, A.L.: Maximal prime subgraph decomposition of Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 32(1), 21–31 (2002)

    Article  Google Scholar 

  32. Oriolo, G., Pietropaoli, U., Stauffer, G.: A New Algorithm for the Maximum Weighted Stable Set Problem in Claw-Free Graphs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 77–96. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Oriolo, G., Stauffer, G., Ventura, P.: Stable sets in claw-free graphs: recent achievements and future challenges. Optima 86 (2011)

    Google Scholar 

  34. Parra, A., Scheffler, P.: Characterizations and Algorithmic Applications of Chordal Graph Embeddings. Discrete Applied Mathematics 79(1-3), 171–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press, NY (1973)

    Google Scholar 

  36. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tarjan, R.E.: Decomposition by clique separators. Discrete Mathematics 55, 221–232 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Wagler, A. (2012). Triangulation and Clique Separator Decomposition of Claw-Free Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics