Abstract
The class of D-dotted interval (D-DI) graphs is the class of intersection graphs of arithmetic progressions with jump (common difference) at most D. We consider various classical graph-theoretic optimization problems in D-DI graphs of arbitrarily, but fixed, D.
We show that Maximum Independent Set, Minimum Vertex Cover, and Minimum Dominating Set can be solved in polynomial time in this graph class, answering an open question posed by Jiang (Inf. Processing Letters, 98(1):29–33, 2006). We also show that Minimum Vertex Cover can be approximated within a factor of (1 + ε) for any ε > 0 in linear time. This algorithm generalizes to a wide class of deletion problems including the classical Minimum Feedback Vertex Set and Minimum Planar Deletion problems.
Our algorithms are based on classical results in algorithmic graph theory and new structural properties of D-DI graphs that may be of independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications 11 (1998)
Aumann, Y., Lewenstein, M., Melamud, O., Pinter, R.Y., Yakhini, Z.: Dotted interval graphs and high throughput genotyping. In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 339–348 (2005)
Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)
Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)
Bar-Yehuda, R., Hermelin, D., Rawitz, D.: Minimum vertex cover in rectangle graphs. Comput. Geom. 44(6-7), 356–364 (2011)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–22 (1993)
Borie, R., Parker, R., Tovey, C.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)
Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. ACM Transactions on Algorithms 6(2) (2010)
Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: 20th Annual ACM-SIAM SODA, pp. 892–901 (2009)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)
Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing 34 (2005)
Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods 1(2), 216–227 (1980)
Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. Journal of Algorithms 9(3), 314–320 (1988)
Hermelin, D., Rawitz, D.: Optimization problems in multiple subtree graphs. Discrete Applied Mathematics 159(7), 588–594 (2011)
Hsu, W.-L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. Inf. Process. Lett. 40(3), 123–129 (1991)
Hunt III, H.B., Marathe, M., Radhakrishnan, V., Ravi, S., Rosenkrantz, D., Stearns, R.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms 26 (1998)
Jiang, M.: Approximating minimum coloring and maximum independent set in dotted interval graphs. Inf. Process. Lett. 98(1), 29–33 (2006)
Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35(1), 39–61 (1983)
van Leeuwen, E.J.: Approximation Algorithms for Unit Disk Graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 351–361. Springer, Heidelberg (2005)
van Leeuwen, E.J.: Better Approximation Schemes for Disk Graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 316–327. Springer, Heidelberg (2006)
Yanovski, V.: Approximation algorithm for coloring of dotted interval graphs. Inf. Process. Lett. 108(1), 41–44 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hermelin, D., Mestre, J., Rawitz, D. (2012). Optimization Problems in Dotted Interval Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-34611-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34610-1
Online ISBN: 978-3-642-34611-8
eBook Packages: Computer ScienceComputer Science (R0)