Abstract
In this paper we introduce a generalization of the local approximation called a local probabilistic approximation. Our novel idea is associated with a parameter (probability) α. If α = 1, the local probabilistic approximation becomes a local lower approximation; for small α, it becomes a local upper approximation. The main objective of this paper is to test whether proper local probabilistic approximations (different from local lower and upper approximations) are better than ordinary local lower and upper approximations. Our experimental results, based on ten-fold cross validation, show that all depends on a data set: for some data sets proper local probabilistic approximations are better than local lower and upper approximations; for some data sets there is no difference, for yet other data sets proper local probabilistic approximations are worse than local lower and upper approximations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Grzymala-Busse, J.W., Rzasa, W.: Local and Global Approximations for Incomplete Data. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 244–253. Springer, Heidelberg (2006)
Grzymala-Busse, J.W., Rzasa, W.: A local version of the MLEM2 algorithm for rule induction. Fundamenta Informaticae 100, 99–116 (2010)
Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining: Opportunities and Challenges, pp. 142–173. Idea Group Publ., Hershey (2003)
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)
Ślęzak, D., Ziarko, W.: The investigation of the bayesian rough set model. International Journal of Approximate Reasoning 40, 81–91 (2005)
Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximate Reasoning 49, 255–271 (2008)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)
Ziarko, W.: Probabilistic approach to rough sets. International Journal of Approximate Reasoning 49, 272–284 (2008)
Grzymała-Busse, J.W.: Generalized Parameterized Approximations. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 136–145. Springer, Heidelberg (2011)
Clark, P.G., Grzymala-Busse, J.W.: Experiments on probabilistic approximations. In: Proceedings of the 2011 IEEE International Conference on Granular Computing, pp. 144–149 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clark, P.G., Grzymala-Busse, J.W., Kuehnhausen, M. (2012). Local Probabilistic Approximations for Incomplete Data. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2012. Lecture Notes in Computer Science(), vol 7661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34624-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-34624-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34623-1
Online ISBN: 978-3-642-34624-8
eBook Packages: Computer ScienceComputer Science (R0)