Abstract
There are several randomisation-based methods in Privacy Preserving Data Mining. In this paper we discuss the additive perturbation and the retention replacement for continuous attributes. We also investigate the randomisations for binary and nominal attributes. We focus on the relations between them, similarities, and differences. We also discuss properties of randomisation-based methods which are important in real applications during implementation and the usage of particular randomisations. We have proven that the retention replacement can be implemented with the randomisation for nominal attributes. We have also shown that the additive perturbation can be approximated with the aforementioned solution for nominal attributes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) SIGMOD Conference, pp. 439–450. ACM (2000)
Kim, J.J., Winkler, W.E.: Multiplicative noise for masking continuous data. Technical report, Statistical Research Division, US Bureau of the Census, Washington, D.C. (2003)
Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: ICDM, pp. 589–592. IEEE Computer Society (2005)
Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving olap. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 251–262. ACM, New York (2005)
Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 682–693. VLDB Endowment (2003)
Andruszkiewicz, P.: Privacy preserving data mining on the example of classification. Master’s thesis, Warsaw University of Technology (2005) (in Polish)
Andruszkiewicz, P.: Privacy preserving classification for continuous and nominal attributes. In: Proceedings of the 16th International Conference on Intelligent Information Systems (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andruszkiewicz, P. (2012). On the Relations between Retention Replacement, Additive Perturbation, and Randomisations for Nominal Attributes in Privacy Preserving Data Mining. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2012. Lecture Notes in Computer Science(), vol 7661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34624-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-34624-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34623-1
Online ISBN: 978-3-642-34624-8
eBook Packages: Computer ScienceComputer Science (R0)