Skip to main content

Min-Max Itemset Trees for Dense and Categorical Datasets

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7661))

Included in the following conference series:

Abstract

The itemset tree data structure is used in targeted association mining to find rules within a user’s sphere of interest. In this paper, we propose two enhancements to the original unordered itemset trees. The first enhancement consists of sorting all nodes in lexical order based upon the itemsets they contain. In the second enhancement, called the Min-Max Itemset Tree, each node was augmented with minimum and maximum values that represent the range of itemsets contained in the children below. For demonstration purposes, we provide a comprehensive evaluation of the effects of the enhancements on the itemset tree querying process by performing experiments on sparse, dense, and categorical datasets.

This project was funded in part by the Louisiana Highway Safety Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Srikant, R., Agrawal, R.: Mining Generalized Association Rules. In: Proceedings of the 21st International Conference on Very Large Data Bases, VLDB 1995, pp. 407–419 (1995)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  3. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. SIGMOD Rec., 1–12 (1994)

    Google Scholar 

  4. Cheung, Y., Fu, A.: Mining frequent itemsets without support threshold: with and without item constraints. IEEE Trans. on Knowledge and Data Engineering, 1069–2004 (1994)

    Google Scholar 

  5. Pei, J., Jiawei Han, J.: Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explor. Newsl., 31–39 (2002)

    Google Scholar 

  6. Pei, J., Jiawei Han, J., Lakshmanan, L.: Mining frequent itemsets with convertible constraints. In: Proceedings of Data Engineering, pp. 433–442 (2001)

    Google Scholar 

  7. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Data Engineering, pp. 443–452 (2001)

    Google Scholar 

  8. Hafez, A., Deogun, J., Raghavan, V.V.: The Item-Set Tree: A Data Structure for Data Mining. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 183–192. Springer, Heidelberg (1999)s

    Google Scholar 

  9. Kubat, M., Hafez, A., Raghavan, V., Lekkala, J., Chen, W.: Itemset trees for targeted association querying. IEEE Transactions on Knowledge and Data Engineering, 1522–1534 (2003)

    Google Scholar 

  10. Li, Y., Kubat, M.: Searching for high-support itemsets in itemset trees. Intell. Data Anal., 105–120 (2006)

    Google Scholar 

  11. Cooper, C., Zito, M.: Realistic Synthetic Data for Testing Association Rule Mining Algorithms for Market Basket Databases. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 398–405. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Rozsypal, A., Kubat, M.: Association Mining in Gradually Changing Domains. In: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, pp. 366–370 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavergne, J., Benton, R., Raghavan, V.V. (2012). Min-Max Itemset Trees for Dense and Categorical Datasets. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2012. Lecture Notes in Computer Science(), vol 7661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34624-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34624-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34623-1

  • Online ISBN: 978-3-642-34624-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics