Abstract
The itemset tree data structure is used in targeted association mining to find rules within a user’s sphere of interest. In this paper, we propose two enhancements to the original unordered itemset trees. The first enhancement consists of sorting all nodes in lexical order based upon the itemsets they contain. In the second enhancement, called the Min-Max Itemset Tree, each node was augmented with minimum and maximum values that represent the range of itemsets contained in the children below. For demonstration purposes, we provide a comprehensive evaluation of the effects of the enhancements on the itemset tree querying process by performing experiments on sparse, dense, and categorical datasets.
This project was funded in part by the Louisiana Highway Safety Commission.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Srikant, R., Agrawal, R.: Mining Generalized Association Rules. In: Proceedings of the 21st International Conference on Very Large Data Bases, VLDB 1995, pp. 407–419 (1995)
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)
Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. SIGMOD Rec., 1–12 (1994)
Cheung, Y., Fu, A.: Mining frequent itemsets without support threshold: with and without item constraints. IEEE Trans. on Knowledge and Data Engineering, 1069–2004 (1994)
Pei, J., Jiawei Han, J.: Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explor. Newsl., 31–39 (2002)
Pei, J., Jiawei Han, J., Lakshmanan, L.: Mining frequent itemsets with convertible constraints. In: Proceedings of Data Engineering, pp. 433–442 (2001)
Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Data Engineering, pp. 443–452 (2001)
Hafez, A., Deogun, J., Raghavan, V.V.: The Item-Set Tree: A Data Structure for Data Mining. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 183–192. Springer, Heidelberg (1999)s
Kubat, M., Hafez, A., Raghavan, V., Lekkala, J., Chen, W.: Itemset trees for targeted association querying. IEEE Transactions on Knowledge and Data Engineering, 1522–1534 (2003)
Li, Y., Kubat, M.: Searching for high-support itemsets in itemset trees. Intell. Data Anal., 105–120 (2006)
Cooper, C., Zito, M.: Realistic Synthetic Data for Testing Association Rule Mining Algorithms for Market Basket Databases. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 398–405. Springer, Heidelberg (2007)
Rozsypal, A., Kubat, M.: Association Mining in Gradually Changing Domains. In: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, pp. 366–370 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lavergne, J., Benton, R., Raghavan, V.V. (2012). Min-Max Itemset Trees for Dense and Categorical Datasets. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2012. Lecture Notes in Computer Science(), vol 7661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34624-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-34624-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34623-1
Online ISBN: 978-3-642-34624-8
eBook Packages: Computer ScienceComputer Science (R0)