Abstract
In this paper, we propose a method for mining Frequent Weighted Utility Itemsets (FWUIs) from quantitative databases. Firstly, we introduce the WIT (Weighted Itemset Tidset) tree data structure for mining high utility itemsets in the work of Le et al. (2009) and modify it into MWIT (M stands for Modification) tree for mining FWUIs. Next, we propose an algorithm for mining FWUIs using MWIT-tree. We test the proposed algorithm in many databases and show that they are very efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of ACM SIGMOD 1993, pp. 207–216 (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of Very Large Databases 1994, pp. 487–499 (1994)
Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: HUC-Prune: An efficient candidate pruning technique to mine high utility patterns. Applied Intelligence 34(2), 181–198 (2011)
Erwin, A., Gopalan, R.P., Achuthan, N.R.: CTU-Mine: An efficient high utility itemset mining algorithm using the pattern growth approach. In: Proc. of the IEEE 7th International Conferences on Computer and Information Technology, pp. 71–76 (2007)
Ganter, B., Wille, R.: Formal concept analysis. Springer (1999)
Khan, M.S., Muyeba, M., Coenen, F.: A weighted utility framework for mining association rule. In: Proc. of IEEE European Modeling Symposium (EMS 2008), pp. 87–92 (2008a)
Khan, M.S., Muyeba, M.K., Coenen, F.: Weighted Association Rule Mining from Binary and Fuzzy Data. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 200–212. Springer, Heidelberg (2008b)
Lan, G.C., Hong, T.P., Tseng, V.S.: Discovery of high utility itemsets from on-shelf time periods of products. Expert Systems with Applications 38(6), 5851–5857 (2011)
Le, B., Nguyen, H., Cao, T.A., Vo, B.: A novel algorithm for mining high utility itemsets. In: Proc. of the 1st Asian Conference on Intelligent Information and Database Systems, pp. 13–16. IEEE (2009)
Le, B., Nguyen, H., Vo, B.: Efficient Algorithms for mining frequent weighted itemsets from weighted items databases. In: Proc. of the 8th IEEE-RIVF, pp. 59–64 (2010)
Le, B., Nguyen, H., Vo, B.: An efficient strategy for mining high utility itemsets. International Journal of Intelligent Information and Database Systems 5(2), 164–176 (2011)
Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated items discarding strategy for discovering high utility itemsets. Data & Knowledge Engineering 64(1), 198–217 (2008)
Lin, C.-W., Hong, T.-P., Lu, W.-H.: Efficiently Mining High Average Utility Itemsets with a Tree Structure. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5990, pp. 131–139. Springer, Heidelberg (2010)
Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility item-sets. Expert Systems with Applications 38(6), 7419–7424 (2011)
Lin, C.W., Lan, G.C., Hong, T.P.: An incremental mining algorithm for high utility itemsets. Expert Systems with Applications 39(8), 7196–7206 (2012)
Liu, Y., Liao, W., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proc. of UBDM 2005, pp. 90–99 (2005)
Ma, C.X., Zhang, J.: DHUI: A new algorithm for mining high utility itemsets. In: Proc. of the Eighth International Conference on Machine Learning and Cybernetics, pp. 173–177 (2009)
Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proc. of 2004 SIAM International Conference on Data Mining, pp. 482–486 (2004)
Yao, H., Hamilton, H.J.: Mining itemsets utilities from transaction databases. Data and Knowledge Engineering 59(3), 603–626 (2005)
Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility based measures for mining itemsets. In: Proc. of UBDM 2006, pp. 28–37 (2006)
Tao, F., Murtagh, F., Farid, M.: Weighted association rule mining using weighted support and significance framework. In: Proc. of SIGKDD 2003, pp. 661–666 (2003)
Vo, B., Nguyen, H., Ho, T.B., Le, B.: Parallel Method for Mining High Utility Itemsets from Vertically Partitioned Distributed Databases. In: Velásquez, J.D., RÃos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part I. LNCS, vol. 5711, pp. 251–260. Springer, Heidelberg (2009)
Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4), 462–478 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vo, B., Le, B., Jung, J.J. (2012). A Tree-Based Approach for Mining Frequent Weighted Utility Itemsets. In: Nguyen, NT., Hoang, K., JÈ©drzejowicz, P. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2012. Lecture Notes in Computer Science(), vol 7653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34630-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-34630-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34629-3
Online ISBN: 978-3-642-34630-9
eBook Packages: Computer ScienceComputer Science (R0)