Abstract
A method to predict from a data stream of real estate sales transactions based on ensembles of genetic fuzzy systems was proposed. The approach consists in incremental expanding an ensemble by models built over successive chunks of a data stream. The predicted prices of residential premises computed by aged component models for current data are updated according to a trend function reflecting the changes of the market. The impact of different trend functions on the accuracy of single and ensemble fuzzy models was investigated in the paper. The results proved the usefulness of ensemble approach incorporating the correction of individual component model output.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Improving Adaptive Bagging Methods for Evolving Data Streams. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 23–37. Springer, Heidelberg (2009)
Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble methods for evolving data streams. In: Elder IV, J.F., et al. (eds.) KDD 2009, pp. 139–148. ACM Press, New York (2009)
Brzeziński, D., Stefanowski, J.: Accuracy Updated Ensemble for Data Streams with Concept Drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011)
Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man and Cyber., Part B 29(6), 703–715 (1999)
Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011)
Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 79–85 (2012)
Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)
Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)
Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artificial Intelligence 154(1-2), 95–126 (2004)
Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream of Premises Transactions. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 127–140. Springer, Heidelberg (2012)
Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report. Department of Computer Science, Trinity College, Dublin (2004)
Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Getoor, L., et al. (eds.) KDD 2003, pp. 226–235. ACM Press, New York (2003)
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)
Zliobaite, I.: Learning under Concept Drift: an Overview. Technical Report. Faculty of Mathematics and Informatics, Vilnius University, Vilnius (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G. (2012). An Analysis of Change Trends by Predicting from a Data Stream Using Genetic Fuzzy Systems. In: Nguyen, NT., Hoang, K., Jȩdrzejowicz, P. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2012. Lecture Notes in Computer Science(), vol 7653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34630-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-34630-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34629-3
Online ISBN: 978-3-642-34630-9
eBook Packages: Computer ScienceComputer Science (R0)