Skip to main content

Fuzzy Cognitive Maps for Modelling, Predicting and Interpreting HIV Drug Resistance

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2012 (IBERAMIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7637))

Included in the following conference series:

  • 1921 Accesses

Abstract

The high mutability of Human Immunodeficiency Virus (HIV) leads to serious problems on designing efficient antiviral drugs. In fact, in last years the study of drug resistance prediction for HIV mutations has become an open problem for researchers. Several machine learning techniques have been proposed for modelling this sequence classification problem, but most of them are difficult to interpret. This paper presents a modelling of the protease protein as a dynamic system through Fuzzy Cognitive Maps, using the amino acid contact energies for the sequence description. In addition, a Particle Swarm Optimization based learning scheme called PSO-RSVN is used to estimate the causal weight matrix that characterize these structures. Finally, a study with statistical techniques for knowledge discovery is conducted, for determining patterns in the causal influences of each sequence position on the resistance to five well-known inhibitor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Prosperi, M., Ulivi, G.: Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization. In: Abraham, A., Grosan, C., Pedrycz, W. (eds.) Engineering Evolutionary Intelligent Systems. SCI, vol. 82, pp. 251–287. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Beerenwinkel, N., et al.: Computational Methods for the Design of Effective Therapies Against Drug Resistant HIV Strains. Bioinformatics 21(21), 3943–3950 (2005)

    Article  Google Scholar 

  3. Drǎghici, S., Potter, R.: Predicting HIV Drug Resistance with Neural Networks. Bioinformatics 19(1), 98–107 (2003)

    Article  Google Scholar 

  4. Bonet, I., et al.: Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. In: Mira, J., Álvarez, J.R., et al. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 234–243. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Beerenwinkel, N., et al.: Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests. IEEE Intelligent Systems 16(6), 35–41 (2001)

    Article  Google Scholar 

  6. Beerenwinkel, N., et al.: Diversity and Complexity of HIV-1 Drug Resistance A Bioinformatics Approach to Predicting Phenotype from Genotype. Proceedings of the National Academy of USA 99, 8271–8276 (2002)

    Article  Google Scholar 

  7. Kosko, B.: Fuzzy Cognitive Maps. Intl. Journal of Man-Machine Studies 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  8. Kosko, B.: Neural Networks and Fuzzy Systems, a Dynamic System Approach to Machine Intelligence. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  9. Miyazawa, S., Jernigan, R.L.: Contacts Energies Self-Consistent Estimation of Inter-Residue Protein Contact Energies Based on an Equilibrium Mixture Approximation of Residues. PROTEINS: Structure, Function, and Genetics 34, 49–68 (1999)

    Article  Google Scholar 

  10. McMichael, J.M., et al.: Optimizing Fuzzy Cognitive Maps with a Genetic Algorithm. In: AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, pp. 1–11 (2004)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: 1995 IEEE International Conference on Neural Networks (ICNN 1995), vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  12. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 120–127. IEEE (2007)

    Google Scholar 

  13. Clerc, M., Kennedy, J.: The Particle Swarm ( Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. on Evolutionary Comp. 6(1), 58–73 (2002)

    Article  Google Scholar 

  14. Kennedy, J., Russell, C.E.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  15. Nápoles, G., Grau, I., Bello, R.: Particle Swarm Optimization with Random Sampling in Variable Neighbourhoods for Solving Global Minimization Problems. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 352–353. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. León, M., Nápoles, G., et al.: Two Steps Individuals Travel Behavior Modeling through Fuzzy Cognitive Maps Pre-definition and Learning. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part II. LNCS, vol. 7095, pp. 82–94. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. León, M., Nápoles, G., et al.: A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 243–256. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Stanford HIV Drug Resistance Database, http://hivdb.stanford.edu

  19. Woods, M., Carpenter, G.A.: Neural Network and Bioinformatic Methods for Predicting HIV-1 Protease Inhibitor Resistance. CAS/CNS Technical Report 2007-004 (2007)

    Google Scholar 

  20. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers (2011)

    Google Scholar 

  21. Bonet, I.: Modelo para la Clasificación de Secuencias, en Problemas de la Bioinformática, Usando Técnicas de Inteligencia Artificial. PhD Thesis, UCLV (2008)

    Google Scholar 

  22. SPSS Inc.: The SPSS TwoStep Cluster Component. TSCWP-101 Technical Report (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grau, I., Nápoles, G., León, M., Grau, R. (2012). Fuzzy Cognitive Maps for Modelling, Predicting and Interpreting HIV Drug Resistance. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds) Advances in Artificial Intelligence – IBERAMIA 2012. IBERAMIA 2012. Lecture Notes in Computer Science(), vol 7637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34654-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34654-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34653-8

  • Online ISBN: 978-3-642-34654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics