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Preface

Brain imaging brings together the technology, methodology, research questions,
and approaches of a wide range of scientific fields including physics, statistics,
computer science, neuroscience, biology, and engineering. Thus, methodological
and technological advances that enable us to obtain measurements, examine re-
lationships across observations, and link these data to neuroscientific hypotheses
happen in a highly interdisciplinary environment. Open questions in neuroscience
often trigger methodological development, yet original methods can also spur
novel perspectives for posing and answering questions when studying the brain.
We believe the dynamic field of machine learning with its modern approach to
data mining provides many relevant approaches for neuroscience, and enables
the exploration of open questions.

In December 2011, we organized a workshop to explore the interface be-
tween machine learning and neuroimaging, and how this relationship affects the
progress of research, the formulation of novel questions, and the recognition and
tackling of big open issues in the field of neuroscience. In order to start a discus-
sion among the involved communities, we invited experts from machine learning,
biology, neuroscience, and neuroimaging, to share their views on questions they
considered most exciting and important. Before the workshop, we asked all par-
ticipants to contribute questions, in order to assess the spectrum and relevance
of topics. Many replied, and we set out to explore the most pressing issues during
two panel discussions that involved all invited speakers and a vocal audience.
There were two general themes of discussion. The first focused on the following
question: how can we interpret findings that are obtained with multivariate pat-
tern analysis (MVPA) approachs, in the context of neuroscientific questions we
seek to answer. The second general theme focused on the shift and divergence
of paradigms, which have emerged while the field has moved on from exclusively
univariate approaches. As an introduction to this volume we briefly summarize
these two discussions.

The Interpretation of MVPA Findings

How can sophisticated methods be made more relevant and accessible?

Multivariate models are, by construction, difficult to study and visualize since
they are based on patterns that span the image and are not localized. Non-
linear models, such as those used in kernel-based methods, are even harder to
characterize since they cannot be represented with a single discriminative map.
Thus, interpreting findings made with multivariate-, or other machine-learning
approaches, is not straightforward. In studying multivariate models, our goal
is to seek answers to the questions such as the following, whether implicitly or
explicitly: What is the link between measurements and physiology? What can we
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say about cognitive processes, and their relationships among each other? What
is the relationship between observations and experiment conditions?

Building on massive univariate approaches, such as those based on the Gen-
eral Linear Model, where every voxel is independently probed for its relationship
to a task, many early MVPA methods probed local patterns in a search light
style in order to check the data’s capability to differentiate between experimen-
tal conditions or stimuli. This encoding-decoding approach enables the observer
to ask not only for the relationship of neuroimaging data to experimental con-
ditions, but also for the relationship among experimental conditions, and their
shared functional structures. This represents a fundamental breakthrough, since
we can now study the internal structure and relationships among tasks, and
move toward an understanding of how this functional structure is formed and
embedded in the space of anatomy.

Moving beyond local neighborhoods, approaches such as ensemble learning,
multivariate regression, or manifold learning typically view the brain as a global
pattern or connectivity structure. While this makes physiological interpretation
more complex, it enables us to capture distributed processes.

For many methods our understanding of their statistical properties is limited.
The common approach to quantify the model fit in MVPA methods is via metrics
such as area under the curve, average accuracy, and mean square error obtained
from cross-validation. However, we might also be interested in other statistical
quantities: how can we assign confidence intervals and statistical significance
to the boundaries of the regions we detect, to our estimates of prediction ac-
curacy, and the relationship of both to the experimental conditions; and how
confident can we be that our results generalize beyond study populations. What
are the methods that achieve statistical interpretability? A rigorous statistical
framework to draw neuroscientific or clinical conclusions from observations is
essential for their proper adoption. This responsibility is particularly pressing
once published results are picked up and form bases for clinical decisions.

Instead of pushing for a small unified and well-understood set of tools that
can be used by the neuroscience community, participants suggested that there is
a constant dialog among practitioners and method developers. By adopting this
dynamic approach, neuroscientists can focus on asking relevant questions, while
receiving help on choosing the right tool. Furthermore, they can understand
what kind of new questions they can ask if the machine learning community
provides novel approaches. Thus, instead of a gap between machine learning
and neuroscience there should be a relaxed and focused communication. Instead
of consolidation, the process of methodology development and scientific inquiry
should progress as a feedback loop, in which one fosters the other.

Divergence of Paradigms

Can MVPA methods help us move beyond simple contrast-based studies?

Multivariate encoding-decoding schemes were originally developed as alterna-
tive strategies to analyze neuroimaging data within the boundaries of
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traditional experimental paradigms. Yet, MVPA methodology inspired by these
early effort has come to free us from the constraints of simple experimental
designs by enabling us to ask new and different questions from neuroimaging
data. The divergence of methodology, workshop participants observed, helped
us move beyond simple contrast-based studies. Today, researchers can choose
from a wide array of supervised, unsupervised, or semisupervised multivariate
methods to analyze their imaging data, in order to identify structure in neu-
roimaging data such as resting state fMRI or characterize the space of stimuli,
for example, by identifying semantic structure among visual or auditory stimuli.
The discussion did not lead to an ultimate consensus regarding a consolidated
set of paradigms. Yet the participants agreed that the richness in methodology
would continue to feed the divergence of paradigms in neuroscientific research.

Remaining Questions

Many important questions remained unaddressed during the discussion. These
include, but are not limited to, the following. Similar to the mass-univariate
GLM-based approach, can we develop general MVPA methods that might be
specialized for specific situations? Can the machine learning community agree
on a few established problems to work on, knowing that they will stay relevant
even if particular neuroscientific questions change? How can we choose between
alternative models? What are the advantages and disadvantages of generative
versus discriminative models? Is there a unified framework for performing brain
mapping based on MVPA methodology? We hope that these and many other
questions will be explored in future incarnations of this workshop.

In this volume we collect contributions from the MLINI Workshop at the
Conference on Neural Information Processing (NIPS 2011). These works aim to
shed some light on the state of the art of this interdisciplinary field that in-
volves both the machine learning and neuroimaging communities. The papers
underwent a thorough review process, and from an initial 48 submissions, 32 pa-
pers were selected for inclusion in the proceedings. Additionally, invited speakers
agreed to contribute reviews on various aspects of the field, adding breadth and
perspective to the volume.

December 2011 Georg Langs
Irina Rish

Moritz Grosse-Wentrup
Brain Murphy
Bjoern Menze
Mert Sabuncu
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