Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7263))

Abstract

Beamforming is one of the most commonly used methods for estimating the active neural sources from the MEG or EEG sensor readings. The basic assumption in beamforming is that the sources are uncorrelated, which allows for estimating each source independent of the others. In this paper, we incorporate the independence assumption of the standard beamformer in a linear dynamical system, thereby introducing the dynamic beamformer. Using empirical data, we show that the dynamic beamformer outperforms the standard beamformer in predicting the condition of interest which strongly suggests that it also outperforms the standard method in localizing the active neural generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antelis, J., Minguez, J.: Dynamic solution to the EEG source localization problem using Kalman filters and particle filters. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 77–80 (2009)

    Google Scholar 

  2. Antelis, J., Minguez, J.: DYNAMO: Dynamic multi-model source localization method for EEG and/or MEG. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5141–5144 (2010)

    Google Scholar 

  3. Bahramisharif, A., van Gerven, M., Heskes, T., Jensen, O.: Covert attention allows for continuous control of brain-computer interfaces. Eur. J. Neurosci. 31(8), 1501–1508 (2010)

    Article  Google Scholar 

  4. Beauchamp, M., Petit, L., Ellmore, T., Ingeholm, J., Haxby, J.: A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage 14(2), 310–321 (2001)

    Article  Google Scholar 

  5. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  6. Dale, A., Liu, A., Fischl, B., Buckner, R., Belliveau, J., Lewine, J., Halgren, E.: Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1), 55–67 (2000)

    Article  Google Scholar 

  7. Dale, A., Sereno, M.: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cognitive Neurosci. 5(2), 162–176 (1993)

    Article  Google Scholar 

  8. Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., Salmelin, R.: Dynamic imaging of coherent sources: studying neural interactions in the human brain. P. Natl. Acad. Sci. USA 98(2), 694–699 (2001)

    Article  Google Scholar 

  9. Hämäläinen, M., Ilmoniemi, R.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)

    Article  Google Scholar 

  10. Haufe, S., Tomioka, R., Nolte, G., Müller, K., Kawanabe, M.: Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE T. Bio-Med. Eng. 57(8), 1954–1963 (2010)

    Article  Google Scholar 

  11. Jensen, O., Bahramisharif, A., Oostenveld, R., Klanke, S., Hadjipapas, A., Okazaki, Y., van Gerven, M.: Using brain–computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience. Front. Psychol. 2(100) (2011)

    Google Scholar 

  12. Mattout, J., Phillips, C., Penny, W., Rugg, M., Friston, K.: MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30(3), 753–767 (2006)

    Article  Google Scholar 

  13. Nolte, G.: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003)

    Article  Google Scholar 

  14. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computat. Intell. Neurosc. 2011, 1 (2011)

    Article  Google Scholar 

  15. Oppenheim, A., Willsky, A., Nawab, S.: Signals and Systems. Pearson education (1998)

    Google Scholar 

  16. Penny, W., Kiebel, S., Friston, K.: Variational Bayesian inference for fMRI time series. NeuroImage 19(3), 727–741 (2003)

    Article  Google Scholar 

  17. Roweis, S., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural Comput. 11(2), 305–345 (1999)

    Article  Google Scholar 

  18. Van Veen, B., van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE T. Bio-Med. Eng. 44(9), 867–880 (1997)

    Article  Google Scholar 

  19. Wipf, D., Nagarajan, S.: A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44(3), 947–966 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bahramisharif, A., van Gerven, M.A.J., Schoffelen, JM., Ghahramani, Z., Heskes, T. (2012). The Dynamic Beamformer. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics