Abstract
A multi voxel pattern analysis classification framework suitable for neuroimaging data is introduced. The framework includes a novel feature extraction method that uses local modeling based on domain specific knowledge, and therefore, can produce better whole-brain global classification performance using a smaller number of features. In particular, the method includes spherical searchlights in combination with local SVM modeling. The performance of the framework is demonstrated on a challenging fMRI classification problem, and is found to be superior to the performance of state-of-the-art feature selection methods used in neuroimaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellman, R.E.: Adaptive control processes - A guided tour. Princeton University Press, Princeton (1961)
Cavanna, A.E., Trimble, M.R.: The precuneus: a review of its functional anatomy and behavioural correlates. Brain: A Journal of Neurology 129(Pt 3), 564–583 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16399806
Detre, G.J., Polyn, S.M., Moore, C.D., Natu, V.S., Singer, B.D., Cohen, J.D., Haxby, J.V., Norman, K.A.: The Multi-Voxel Pattern Analysis (MVPA) toolbox a Poster presented at the Annual Meeting of the Organization for Human Brain Mapping (2006)
Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27(5), 392–401 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16596654
Guyon, I., Elisseefi, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3(7-8), 1157–1182 (2003), http://dl.acm.org/citation.cfm?id=944968
Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America 103(10), 3863–3868 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16537458
Mur, M., Bandettini, P., Kriegeskorte, N.: Revealing representational content with pattern-information fMRI–an introductory guide. Social Cognitive and Affective Neuroscience 4(1), 101 (2009), http://www.pubmedcentral.nih.gov/2656880 http://scan.oxfordjournals.org/content/4/1/101.short
Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10(9), 424–430 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16899397
Pereira, F., Botvinick, M.: Information mapping with pattern classifiers: A comparative study. NeuroImage (May 2010), http://www.ncbi.nlm.nih.gov/pubmed/20488249
Pereira, F., Botvinick, M.: Classification of Functional Magnetic Resonance Imaging Data using Informative Pattern Features Categories and Subject Descriptors. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 940–946. ACM, New York (2011)
Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1 suppl.) S199–S209 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19070668
Vapnik, V.N.: Statistical learning theory, 1st edn. Wiley (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jamshy, S., Perez, O., Yeshurun, Y., Hendler, T., Intrator, N. (2012). Searchlight Based Feature Extraction. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-34713-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34712-2
Online ISBN: 978-3-642-34713-9
eBook Packages: Computer ScienceComputer Science (R0)