Abstract
Shortest path algorithms are finding interesting applications in recent times in various emerging areas of image analysis and computer vision. Such algorithms are designed to solve shortest path problems with variegated need-based constraints. We present here an efficient combinatorial algorithm to find a/the shortest isothetic path (SIP) between two grid points in a digital object such that the SIP lies entirely inside the object. The algorithm first obtains the inner isothetic cover (simple and without holes) of the object and then applies certain combinatorial rules to construct the SIP and its constituent monotone sub-paths. For a given grid size, the entire algorithm runs in O(n logn) time, n being the number of grid points on the border of the cover. Experimental results show the effectiveness of the algorithm and its further prospects in shape analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. PAMI 12(9), 855–867 (1990)
Arkin, E., Mitchell, J., Piatko, C.: Minimum-link watchman tours. IPL 86, 203–207 (2003)
de Berg, M.: On rectilinear link distance. CGTA 1(1), 13–34 (1991)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry Algorithms and Applications. Springer, Heidelberg (2008)
de Berg, M., van Kreveld, M., Nilsson, B.J., Overmars, M.H.: Finding Shortest Paths in the Presence of Orthogonal Obstacles Using a Combined L 1 and Link Metric. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 213–224. Springer, Heidelberg (1990)
Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)
Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers of a digital object: A combinatorial approach. JVCIR 21(4), 295–310 (2010)
Buckley, M., Yang, J.: Regularised shortest-path extraction. PRL 18(7), 621–629 (1997)
Chin, W.P., Ntafos, S.: The zookeeper route problem. Information Sc. 63(3), 245–259 (1992)
Clarkson, K.L., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in O(n (logn)2) time. In: Proc. SCG, pp. 251–257 (1987)
Culberson, J.C., Reckhow, R.A.: Orthogonally convex coverings of orthogonal polygons without holes. J. Computer and Sys. Sc. 39(2), 166–204 (1989)
Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. J. Algorithms 48(1), 135–159 (2003)
Farin, G., Hoschek, J., Kim, M.S.: Handbook of Computer Aided Geometric Design. Elsevier (2002)
Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press (2007)
Gudmundsson, J., Levcopoulos, C.: A Fast Approximation Algorithm for TSP with Neighborhoods and Red-Blue Separation. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 473–482. Springer, Heidelberg (1999)
Inkula, R., Kapoor, S.: Planar rectilinear shortest path computation using corridors. CGTA 42, 873–884 (2009)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Picture Analysis. Morgan Kaufmann (2004)
Larson, R.C., Li, V.O.: Finding minimum rectilinear distance paths in the presence of barriers. Networks 11, 285–304 (1981)
Li, F., Klette, R.: Finding the Shortest Path Between Two Points in a Simple Polygon by Applying a Rubberband Algorithm. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, pp. 280–291. Springer, Heidelberg (2006)
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. PAMI 29, 286–299 (2007)
Lozano, P.T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Magazine Comm. ACM 22(10), 560–570 (1979)
Ntafos, S.: Watchman routes under limited visibility. CGTA 1, 149–170 (1992)
de Resende, P.J., Lee, D.T., Wu, Y.F.: Rectilinear shortest paths with rectangular barriers. In: Proc. SCG, pp. 204–213 (1985)
Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. In: Proc. STOC, pp. 193–215 (1986)
Sun, C., Pallottino, S.: Circular shortest path in images. PR 36(3), 709–719 (2003)
Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. Discrete App. Maths. 136, 363–376 (2004)
Tan, X., Hirata, T.: Finding shortest safari routes in simple polygons. IPL 87(4), 179–186 (2003)
Wei, X.: Monotone path queries and monotone subdivision problems in polygonal domains. Ph.D. thesis, Hong Kong Univ. Sc. & Tech. (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B. (2012). On Finding Shortest Isothetic Path inside a Digital Object. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds) Combinatorial Image Analaysis. IWCIA 2012. Lecture Notes in Computer Science, vol 7655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34732-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-34732-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34731-3
Online ISBN: 978-3-642-34732-0
eBook Packages: Computer ScienceComputer Science (R0)