Abstract
We study graphs with the vertex set ℤ2 which are subgraphs of the 8-adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate ℤ2 into exactly two connected components. For the minimal graphs with this property, we discuss their quotient graphs, too.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)
Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36, 1–17 (1990)
Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. Journ. Appl. Math. Stoch. Anal. 3, 27–55 (1990)
Kiselman, C.O.: Digital Jordan Curve Theorems. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 46–56. Springer, Heidelberg (2000)
Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Amer. Math. Monthly 98, 902–917 (1991)
Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discr. Comput. Geom. 6, 155–161 (1991)
Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)
Rosenfeld, A.: Picture Languages. Academic Press, New York (1979)
Šlapal, J.: Closure operations for digital topology. Theor. Comp. Sci. 305, 457–471 (2003)
Šlapal, J.: A digital analogue of the Jordan curve theorem. Discr. Appl. Math. 139, 231–251 (2004)
Šlapal, J.: Digital Jordan curves. Topology Appl. 153, 3255–3264 (2006)
Šlapal, J.: A quotient universal digital topology. Theor. Comp. Sci. 405, 164–175 (2008)
Šlapal, J.: Jordan Curve Theorems with Respect to Certain Pretopologies on ℤ2. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 252–262. Springer, Heidelberg (2009)
Šlapal, J.: Convenient Closure Operators on ℤ2. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 425–436. Springer, Heidelberg (2009)
Slapal, J.: A Jordan Curve Theorem in the Digital Plane. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 120–131. Springer, Heidelberg (2011)
Šlapal, J.: A digital pretopology and one of its quotients. Topology Proc. 39, 13–25 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Šlapal, J. (2012). Adjacencies for Structuring the Digital Plane. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds) Combinatorial Image Analaysis. IWCIA 2012. Lecture Notes in Computer Science, vol 7655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34732-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-34732-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34731-3
Online ISBN: 978-3-642-34732-0
eBook Packages: Computer ScienceComputer Science (R0)