Skip to main content

Multimedia Event Detection Using Segment-Based Approach for Motion Feature

  • Conference paper
Advances in Multimedia Information Processing – PCM 2012 (PCM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7674))

Included in the following conference series:

  • 3556 Accesses

Abstract

Detecting event in multimedia video has become a popular research topic. One of the most important clues to determine an event in video is its motion features. Currently, motion features are often extracted from the whole video using dense sampling strategy. However, this extraction method is computationally prohibitive when it comes to large scale video dataset. Moreover, video length may be very different, which makes it unreliable to compare the feature between videos. In this paper, we propose to use segment-based approach to extract motion feature. Basically, original videos are quantized into fixed-length segments for both training and testing, while still keep evaluation at video-level. Our approach has achieved promising results when applying for dense trajectory motion feature on TRECVID 2010 Multimedia Event Detection (MED) dataset. Combining with global and local features, our event detection system has comparable performance with other state-of-the-art MED systems, while the computational cost is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jiang, Y.G., Zeng, X., Ye, G., Bhattacharya, S., Ellis, D., Shah, M., Chang, S.F.: Columbia-ucf trecvid2010 multimedia event detection: Combining multiple modalities, contextual concepts, and temporal matching. In: NIST TRECVID Workshop, Gaithersburg, MD (November 2010)

    Google Scholar 

  2. Hill, M., Hua, G., Natsev, A., Smith, J.R., Xie, L., Huang, B., Merler, M., Ouyang, H., Zhou, M.: Ibm research trecvid-2010 video copy detection and multimedia event detection system. In: NIST TRECVID Workshop, Gaithersburg, MD (November 2010)

    Google Scholar 

  3. Matsuo, T., Nakajima, S.: Nikon multimedia event detection system. In: NIST TRECVID Workshop, Gaithersburg, MD (November 2010)

    Google Scholar 

  4. Natarajan, P., Manohar, V., Wu, S., Tsakalidis, S., Vitaladevuni, S.N., Zhuang, X., Prasad, R., Ye, G., Liu, D.: Bbn viser trecvid 2011 multimedia event detection system. In: NIST TRECVID Workshop, Gaithersburg, MD (December 2011)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2-3), 107–123 (2005)

    Article  Google Scholar 

  7. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  8. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Conference on Computer Vision & Pattern Recognition (June 2008)

    Google Scholar 

  9. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1582–1596 (2010)

    Article  Google Scholar 

  10. Kläser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: British Machine Vision Conference, pp. 995–1004 (September 2008)

    Google Scholar 

  11. Chen, M., Hauptmann, A.: Mosift: Recognizing human actions in surveillance videos. In: Computer Science Department, CMU-CS-09-161 (2009)

    Google Scholar 

  12. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action Recognition by Dense Trajectories. In: IEEE Conference on Computer Vision & Pattern Recognition, Colorado Springs, United States, pp. 3169–3176 (June 2011)

    Google Scholar 

  13. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision & Pattern Recognition, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334, vol. 2, pp. 886–893 (June 2005)

    Google Scholar 

  15. Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of Flow and Appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Jiang, Y.G., Ngo, C.W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 494–501 (2007)

    Google Scholar 

  17. Jiang, Y.G., Yang, J., Ngo, C.W., Hauptmann, A.G.: Representations of keypoint-based semantic concept detection: A comprehensive study. IEEE Transactions on Multimedia 12, 42–53 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phan, S. et al. (2012). Multimedia Event Detection Using Segment-Based Approach for Motion Feature. In: Lin, W., et al. Advances in Multimedia Information Processing – PCM 2012. PCM 2012. Lecture Notes in Computer Science, vol 7674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34778-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34778-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34777-1

  • Online ISBN: 978-3-642-34778-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics