Skip to main content

Spherical Soft Assignment: Improving Image Representation in Content-Based Image Retrieval

  • Conference paper
Advances in Multimedia Information Processing – PCM 2012 (PCM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7674))

Included in the following conference series:

  • 3571 Accesses

Abstract

Image representation is essential to performance of content-based image retrieval. VLAD has been proved to be superior to BOF. However, hard assignment is utilized in VLAD, which does not consider codeword uncertainty and codeword plausibility. In this paper, each cluster associated to visual word is defined as a hyper-sphere. The radius is denoted as the distance from visual word to the farthest feature point. Spherical soft assignment is proposed to adaptively assign a local feature to close visual words according to corresponding radius. Spherical soft assignment and a descriptor-space soft assignment of state of the art are applied to VLAD. Experiments on multiple datasets demonstrate that the proposed spherical soft assignment can noticeably improve VLAD image representation in image retrieval and be superior to the descriptor-space soft assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Josef, S., Andrew, Z.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: IEEE International Conference on Computer Vision, ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  2. Herve, J., Matthijs, D., Cordelia, S.: Improving Bag-of-Features for Large Scale Image Search. International Journal of Computer Vision, IJCV 87(3), 316–326 (2010)

    Article  Google Scholar 

  3. David, N., Henrik, S.: Scalable Recognition with a Vocabulary Tree. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2161–2168 (2006)

    Google Scholar 

  4. James, P., Ondrej, C., Michael, I., et al.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8 (2007), doi:10.1109/CVPR.2007.383172

    Google Scholar 

  5. Florent, P., Christopher, D.: Fisher Kernels on Visual Vocabularies for Image Categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8 (2007), doi:10.1109/CVPR.2007.383266

    Google Scholar 

  6. Herve, J., Matthijs, D., Cordelia, S., et al.: Aggregating local descriptors into a compact image representation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 3304–3311 (2010)

    Google Scholar 

  7. David, G.L.: Distinctive Image Feature from Scale-Invariant Keypoints. International Journal of Computer Vision, IJCV 60(2), 91–100 (2004)

    Article  Google Scholar 

  8. David, C., Sam, T., Vijay, C., et al.: Residual Enhanced Visual Vectors for On-Device Image Matching. In: 45th Asilomar Conference on Signals, Systems and Computers, ASILOMAR, pp. 850–854 (2011)

    Google Scholar 

  9. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel Codebooks for Scene Categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M.: Visual Word Ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)

    Article  Google Scholar 

  11. James, P., Ondrej, C., Michael, I., et al.: Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8 (2008)

    Google Scholar 

  12. Christopher, M.B.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. Linqiao, L., Lei, W., Xinwang, L.: In Defense of Soft-assignment Coding. In: IEEE International Conference on Computer Vision, ICCV, pp. 2486–2493 (2011)

    Google Scholar 

  14. Herve, J., Matthijs, D., Cordelia, S.: Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2010)

    Google Scholar 

  15. Jegou, H., Douze, M., Schmid, C.: Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. UKbench descriptor, http://bigimbaz.inrialpes.fr/herve/ukbench_descriptors/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ai, L., Yu, J., Guan, T. (2012). Spherical Soft Assignment: Improving Image Representation in Content-Based Image Retrieval. In: Lin, W., et al. Advances in Multimedia Information Processing – PCM 2012. PCM 2012. Lecture Notes in Computer Science, vol 7674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34778-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34778-8_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34777-1

  • Online ISBN: 978-3-642-34778-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics