Skip to main content

Abstract

Current cognitive vision systems and autonomous robots are not able to flexibly adapt to novel scenes. For example, when entering a new kitchen it is relatively simple for humans to adapt to the new situation. However, there exist no methods such that a robot holds a generic kitchen model that is then adapted to the new situation. We tackle this by developing a hierarchical ontology system linking process, object, and abstract world knowledge via connecting ontologies, all defined in a formal description language.

The items and objects and their affordances in the object ontology are either learned from 3D models of the Web or from samples. We bind the features of the learned models to the concepts represented in the ontology. This enables us to actively search for objects to be expected to be seen in a kitchen scenario. The search for the objects will use the selection of cues appropriate to the relevant object. We plan to evaluate this model in three different kitchens with a mobile robot with an arm and further with Romeo, a humanoid robot designed by Aldebaran to operate in homes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intelligent Systems 21, 96–101 (2006)

    Article  Google Scholar 

  2. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, USA (1979)

    Google Scholar 

  3. Sloman, A.: Getting meaning off the ground: Symbol-grounding vs symbol-tethering (March 2002), http://www.cs.bham.ac.uk/research/projects/cogaff/talks/ (April 2009)

  4. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Boston (2001)

    Google Scholar 

  5. Land, M., Mennie, N., Rusted, J.: The roles of vision and eye movements in the control of activities of daily living. Perception 28(11), 1311–1328 (1999)

    Article  Google Scholar 

  6. Tatler, B.W., Hayhoe, M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: Reinterpreting salience. Journal of Vision 11(5), 1–23 (2011)

    Article  Google Scholar 

  7. Clancy, W.J.: Situated Cognition. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  8. Gravot, F., Haneda, A., Okada, K., Inaba, M.: Cooking for humanoid robot, a task that needs symbolic and geometric reasoning. In: IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 462–467 (May 2006)

    Google Scholar 

  9. Tenorth, M., Klank, U., Pangercic, D., Beetz, M.: Web-enabled robots. IEEE Robotics Automation Magazine 18(2), 58–68 (2011)

    Article  Google Scholar 

  10. Flint, A., Mei, C., Murray, D., Reid, I.: A Dynamic Programming Approach to Reconstructing Building Interiors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 394–407. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M.E., Beetz, M.: Functional object mapping of kitchen environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3525–3532 (September 2008)

    Google Scholar 

  12. Ruhnke, M., Steder, B., Grisetti, G., Burgard, W.: Unsupervised learning of compact 3d models based on the detection of recurrent structures. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2137–2142 (October 2010)

    Google Scholar 

  13. Meger, D., Forssn, P.-E., Lai, K., Helmer, S., McCann, S., Southey, T., Baumann, M., Little, J.J., Lowe, D.G.: Curious george: An attentive semantic robot. Robotics and Autonomous Systems 56(6), 503–511 (2008); from Sensors to Human Spatial Concepts

    Google Scholar 

  14. Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J.K., Korner, E.: Active 3d object localization using a humanoid robot. IEEE Trans. on Robotics 27(1), 47–64 (2011)

    Article  Google Scholar 

  15. Meger, D., Gupta, A., Little, J.J.: Viewpoint detection models for sequential embodied object category recognition. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 5055–5061 (May 2010)

    Google Scholar 

  16. Wyatt, J.L., Aydemir, A., Brenner, M., Hanheide, M., Hawes, N., Jensfelt, P., Kristan, M., Kruijff, G.M., Lison, P., Pronobis, A., Sjöö, K., Vrecko, A., Zender, H., Zillich, M., Skocaj, D.: Self-understanding and self-extension: A systems and representational approach. IEEE Transactions on Autonomous Mental Development 2(4), 282–303 (2010)

    Article  Google Scholar 

  17. Drumwright, E.: The task matrix: An extensible framework for creating versatile humanoid robots. In: IEEE Intl. Conf. on Robotics and Automation, ICRA (2006)

    Google Scholar 

  18. Feng, Q., Bratukhin, A., Treytl, A., Sauter, T.: A exible multi-agent system architecture for plant automation. In: 5th IEEE International Conference on Industrial Informatics, pp. 1047–1052 (2007)

    Google Scholar 

  19. Hidayat, S.S., Kim, B.K., Ohba, K.: Learning affordance for semantic robots using ontology approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, pp. 2630–2636 (2008)

    Google Scholar 

  20. Haselager, P., de Groot, A., van Rappard, H.: Representationalism vs. antirepresentationalism: a debate for the sake of appearance. Philosophical Psychology 16, 5–23 (2003)

    Article  Google Scholar 

  21. Bundesen, C., Habekost, T.: Attention. In: Lamberts, K., Goldstone, R. (eds.) Handbook of Cognition, Sage Publications, London (2005)

    Google Scholar 

  22. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundation: A survey. ACM Trans. Applied Perception 7(1), 1–46 (2010)

    Article  Google Scholar 

  23. Treisman, A.M., Gelade, G.: A feature integration theory of attention. Cognitive Psychology 12, 97–136 (1980)

    Article  Google Scholar 

  24. Wolfe, J.M.: Visual search. In: Pashler, H. (ed.) Attention, pp. 13–74. Psychology Press, Hove (1998)

    Google Scholar 

  25. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004)

    Article  Google Scholar 

  26. Boley, H.: Posl: An integrated positional-slotted language for semantic web knowledge, ruleml draft (2004), http://www.ruleml.org/submission/ruleml-shortation.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckner, D., Vincze, M., Hinterleitner, I. (2012). Towards Reorientation with a Humanoid Robot. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification, and Validation. ISoLA 2011. Communications in Computer and Information Science, vol 336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34781-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34781-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34780-1

  • Online ISBN: 978-3-642-34781-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics