Abstract
By their very nature, Intelligent Environments (IE’s) are infused with complexity, unreliability and uncertainty due to a combination of sensor noise and the human element. The quantity, type and availability of data to model these applications can be a major issue. Each situation is contextually different and constantly changing. The dynamic nature of the implementations present a challenging problem when attempting to model or learn a model of the environment. Training data to construct the model must be within the same feature space and have the same distribution as the target task data, however this is often highly costly and time consuming. There can even be occurrences were a complete lack of labelled target data occurs. It is within these situations that our study is focussed. In this paper we propose a framework to dynamically model IE’s through the use of data sets from differing feature spaces and domains. The framework is constructed using a novel Fuzzy Transfer Learning (FuzzyTL) process.
The use of a FuzzyTL algorithm allows for a source of labelled data to improve the learning of an alternative context task. We will demonstrate the application of an Fuzzy Inference System (FIS) to produce a model from a source Intelligent Environment (IE) which can provide the knowledge for a differing target context. We will investigate the use of FuzzyTL within differing contextual distributions through the use of temporal and spatial alternative domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arslan, A., Kaya, M.: Determination of fuzzy logic membership functions using genetic algorithms. Fuzzy Sets and Systems 118(2), 297–306 (2001)
Blanke, U., Schiele, B.: Remember and transfer what you have learned-recognizing composite activities based on activity spotting. In: 2010 International Symposium on Wearable Computers (ISWC), pp. 1–8. IEEE (2010)
Bokareva, T., Hu, W., Kanhere, S., Ristic, B., Gordon, N., Bessell, T., Rutten, M., Jha, S.: Wireless sensor networks for battlefield surveillance. In: Proceedings of Land Warfare Conference 2006, Citeseer (2006)
Casillas, J., Cordón, O., Herrera, F.: Improving the wang and mendels fuzzy rule learning method by inducing cooperation among rules. In: Proceedings of the 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, pp. 1682–1688 (2000)
Chen, M.Y., Linkens, D.A.: Rule-base self-generation and simplification for data-driven fuzzy models. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 424–427. IEEE (2001)
Chok, H., Gruenwald, L.: Spatio-temporal association rule mining framework for real-time sensor network applications. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 1761–1764. ACM (2009)
Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases. VLDB Endowment, vol. 30, pp. 588–599 (2004)
Farhadi, A., Tabrizi, M.K.: Learning to Recognize Activities from the Wrong View Point. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 154–166. Springer, Heidelberg (2008)
Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evolutionary Intelligence 1(1), 27–46 (2008)
Jung, Y.J., Lee, Y.K., Lee, D.G., Ryu, K.H., Nittel, S.: Air Pollution Monitoring System based on Geosensor Network 3 (2008)
Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E., Starner, T.E., Newstetter, W., et al.: The aware home: A living laboratory for ubiquitous computing research. LNCS, pp. 191–198 (1999)
Luhr, S., West, G., Venkatesh, S.: Recognition of emergent human behaviour in a smart home: A data mining approach. Pervasive and Mobile Computing 3(2), 95–116 (2007)
Madden, S.: Intel lab data (June 2004), http://db.csail.mit.edu/labdata/labdata.html (published on 2nd June 2004)
Pan, S.J., Kwok, J.T., Yang, Q.: Transfer learning via dimensionality reduction. In: Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 677–682 (2008)
Popescu, M., Coupland, S.: A Fuzzy Logic System for Acoustic Fall Detection. In: Skubic, M. (ed.) Proc. 2008 AAAI Symposium on AI in Eldercare. AAAI, Washington DC (2008)
Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 759–766. ACM (2007)
Rashidi, P., Cook, D.J.: Multi home transfer learning for resident activity discovery and recognition. In: KDD Knowledge Discovery from Sensor Data, pp. 56–63 (2010)
Ross, T.J.: Fuzzy logic with engineering applications. Wiley Online Library (1997)
Simon, G., Maróti, M., Lédeczi, Á., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., Frampton, K.: Sensor network-based countersniper system. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 1–12. ACM, New York (2004)
Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Pervasive Computing 3(2), 42–47 (2004)
Wang, L.-X.: The wm method completed: a flexible fuzzy system approach to data mining. IEEE Transactions on Fuzzy Systems 11(6), 768–782 (2003)
Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man and Cybernetics 22(6), 1414–1427 (1992)
Wang, Q., Shin, W., Liu, X., Zeng, Z., Oh, C., AlShebli, B.K., Caccamo, M., Gunter, C.A., Gunter, E., Hou, J., et al.: I-Living: An open system architecture for assisted living, Citeseer (2006)
Wood, A., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T., Wu, Y., Fang, L., Stoleru, R.: Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network 22(4), 26–33 (2008)
Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shell, J., Coupland, S. (2012). Towards Fuzzy Transfer Learning for Intelligent Environments. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds) Ambient Intelligence. AmI 2012. Lecture Notes in Computer Science, vol 7683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34898-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-34898-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34897-6
Online ISBN: 978-3-642-34898-3
eBook Packages: Computer ScienceComputer Science (R0)