Abstract
A review of the optimization methods used in the design of type-2 fuzzy systems, which are relatively novel models of imprecision, has been considered in this paper. The fundamental focus of the work has been based on the basic reasons of the need for optimizing type-2 fuzzy systems for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy systems for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this paper, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy systems. We also provide a comparison of the different optimization methods for the case of designing type-2 fuzzy systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bingül, Z., Karahan, O.: A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control. Expert Systems with Applications 38(1), 1017–1031 (2011)
Cao, J., Li, P., Liu, H., Brown, D.: Adaptive fuzzy controller for vehicle active suspensions with particle swarm optimization. In: Proceedings of SPIE-The International Society of Optical Engineering, vol. 7129 (2008)
Castillo, O., Huesca, G., Valdez, F.: Evolutionary Computing for Topology Optimization of Type-2 Fuzzy Controllers. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Hybrid Intelligent Systems. STUD FUZZ, vol. 208, pp. 163–178. Springer, Heidelberg (2008)
Castillo, O., Aguilar, L.T., Cazarez-Castro, N.R., Cardenas, S.: Systematic design of a stable type-2 fuzzy logic controller. Applied Soft Computing Journal 8, 1274–1279 (2008)
Castillo, O., Melin, P., Alanis, A., Montiel, O., Sepulveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Journal of Soft Computing 15(6), 1145–1160 (2011)
Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. In: Proceedings of FUZZ-IEEE 2007, London, pp. 1–6 (2007)
Castro, J.R., Castillo, O., Martinez, L.G.: Interval type-2 fuzzy logic toolbox. Engineering Letters 15(1), 14 (2007)
Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)
Cordon, O., Herrera, F., Villar, P.: Analysis and guidelines to obtain a good uniform fuzzy partition granularity for fuzzy rule-based systems using simulated annealing. International Journal of Approximate Reasoning 25, 187–215 (2000)
Dereli, T., Baykasoglu, A., Altun, K., Durmusoglu, A., Turksen, I.B.: Industrial applications of type-2 fuzzy sets and systems: A concise review. Computers in Industry 62, 125–137 (2011)
Hagras, H.: Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems 12, 524–539 (2004)
Juang, C.-F., Hsu, C.-H.: Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Transactions on Industrial Electronics 56(10), 3931–3940 (2009)
Juang, C.-F., Hsu, C.-H.: Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B Cybernetics 39(6), 1528–1542 (2009)
Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems, Technical Report, University of Southern California (1998)
Martinez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Information Sciences 179(13), 2158–2174 (2009)
Martinez, R., Rodriguez, A., Castillo, O., Aguilar, L.T.: Type-2 fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization. In: Proceedings of the IEEE International Conference on Granular Computing, GrC 2010, pp. 724–727 (2010)
Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Processing Journal 80, 913–933 (2000)
Mohammadi, S.M.A., Gharaveisi, A.A., Mashinchi, M.: An evolutionary tuning technique for type-2 fuzzy logic controller in a non-linear system under uncertainty. In: Proceedings of the 18th Iranian Conference on Electrical Engineering, ICEE 2010, pp. 610–616 (2010)
Oh, S.-K., Jang, H.-J., Pedrycz, W.: A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Systems with Applications (2011) (article in press)
Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences 177(10), 2023–2048 (2007)
Wagner, C., Hagras, H.: A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots. In: Proceedings of the IEEE Conference on Fuzzy Systems, London (2007)
Wu, D., Tan, W.-W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), 829–841 (2006)
Yager, R.R.: Fuzzy subsets of type II in decisions. J. Cybernetics 10, 137–159 (1980)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Information Sciences 8, 43–80 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Castillo, O., Melin, P. (2013). Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers. In: Yager, R., Abbasov, A., Reformat, M., Shahbazova, S. (eds) Soft Computing: State of the Art Theory and Novel Applications. Studies in Fuzziness and Soft Computing, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34922-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-34922-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34921-8
Online ISBN: 978-3-642-34922-5
eBook Packages: EngineeringEngineering (R0)