Abstract
We study the complexity of multicollision attacks on generalized iterated hash functions. In 2004 A. Joux showed that the size of a multicollision on any iterated hash function can be increased exponentially while the amount of work (or, equivalently, the length of the collision messages) grows only linearly. In Joux’s considerations it was essential that each message block was used only once when computing the hash value. In 2005 M. Nandi and D. Stinson generalized Joux’s method to iterated hash functions where each message block could be employed at most twice and in an arbitrary order. In the following year J. Hoch and A. Shamir further extended Joux’s ideas, this time to so called ICE hash functions that scan the input message any fixed number of times in an arbitrary order. It was proved that by increasing the work polynomially, exponentially large multicollision sets could be created. The informal attack algorithm of Hoch and Shamir was more rigorously described in [8] where also the amount of work of the attack algorithm (and, as well, the length of the multicollision messages) was more precisely evaluated. In [10] new combinatorial results were proved which allowed a considerably more efficient collision set construction. In this paper we introduce a new set of tools for the combinatorial analysis of long words in which the number of occurrences of any symbol is restricted by a fixed constant. By applying these tools we are able to further shorten the length of the collison messages in an any fixed size collision set leading to a good deal smaller attack complexity. Finally, we study the structure of efficient rules for compression in bounded generalized iterated hash functions (called ICE hash functions in [4]).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)
Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–271 (1998)
Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)
Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)
Klima, V.: Finding MD5 collisions on a notebook PC using multi-message modifications, Cryptology ePrint Archive, Report 2005/102 (2005), http://eprint.iacr.org/2005/102
Klima, V.: Huge multicollisions and multipreimages of hash functions BLENDER-n, Cryptology ePrint Archive, Report 2009/006 (2009), http://eprint.iacr.org/2009/006
Kortelainen, J., Halunen, K., Kortelainen, T.: Multicollision Attacks and Generalized Iterated Hash Functions. J. Math. Cryptol. 4, 239–270 (2010)
Kortelainen, J., Kortelainen, T., Vesanen, A.: Unavoidable Regularities in Long Words with Bounded Number of Symbol Occurrences. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 519–530. Springer, Heidelberg (2011)
Kortelainen, J., Kortelainen, T., Vesanen, A.: Unavoidable regularities in long words with bounded number of symbol occurrences. J. Comp. Optim. (in print)
Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
Nandi, M., Stinson, D.: Multicollision attacks on some generalized sequential hash functions. IEEE Trans. Inform. Theory 53, 759–767 (2007)
Stevens, M.: Fast collision attack on MD5. Cryptology ePrint Archive, Report 2006/104 (2006), http://eprint.iacr.org/2006/104
Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-collisions, IEICE Transactions 91-A(1), 39–45 (2008)
Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Yu, H., Wang, X.: Multi-collision Attack on the Compression Functions of MD4 and 3-Pass HAVAL. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 206–226. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kortelainen, T., Vesanen, A., Kortelainen, J. (2012). Generalized Iterated Hash Fuctions Revisited: New Complexity Bounds for Multicollision Attacks. In: Galbraith, S., Nandi, M. (eds) Progress in Cryptology - INDOCRYPT 2012. INDOCRYPT 2012. Lecture Notes in Computer Science, vol 7668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34931-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-34931-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34930-0
Online ISBN: 978-3-642-34931-7
eBook Packages: Computer ScienceComputer Science (R0)