Skip to main content

mNIR: Diversifying Search Results Based on a Mixture of Novelty, Intention and Relevance

  • Conference paper
Web Information Systems Engineering - WISE 2012 (WISE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7651))

Included in the following conference series:

Abstract

Current search engines do not explicitly take different meanings and usages of user queries into consideration when they rank the search results. As a result, they tend to retrieve results that cover the most popular meanings or usages of the query. Consequently, users who want results that cover a rare meaning or usage of query or results that cover all different meanings/usages may have to go through a large number of results in order to find the desired ones. Another problem with current search engines is that they do not adequately take users’ intention into consideration. In this paper, we introduce a novel result ranking algorithm (mNIR) that explicitly takes result novelty, user intention-based distribution and result relevancy into consideration and mixes them to achieve better result ranking. We analyze how giving different emphasis to the above three aspects would impact the overall ranking of the results. Our approach builds on our previous method for identifying and ranking possible categories of any user query based on the meanings and usages of the terms and phrases within the query. These categories are also used to generate category queries for retrieving results matching different meanings/usages of the original user query. Our experimental results show that the proposed algorithm can outperform state-of-the-art diversification approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: ACM Intl. Conf. on Web Search and Data Mining (2009)

    Google Scholar 

  2. Capannini, G., Nardini, F.M., Perego, R., Silvestri, F.: Efficient diversification of web search results. PVLDB 4(7) (April 2011)

    Google Scholar 

  3. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: ACM SIGIR, pp. 335–336 (1998)

    Google Scholar 

  4. Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., Wu, S.: Intent-based diversification of web search results: metrics and algorithms. Information Retrieval Journal (2011)

    Google Scholar 

  5. Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: ACM SIGIR, pp. 429–436 (2006)

    Google Scholar 

  6. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Buttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: ACM SIGIR, pp. 659–666 (2008)

    Google Scholar 

  7. Clough, P., Sanderson, M., Abouammoh, M., Navarro, S., Paramita, M.: Multiple approaches to analysing query diversity. In: ACM SIGIR, pp. 734–735 (2009)

    Google Scholar 

  8. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW Conference, pp. 381–390 (2009)

    Google Scholar 

  9. Hemayati, R.T., Meng, W., Yu, C.: Identifying and Ranking Possible Semantic and Common Usage Categories of Search Engine Queries. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 254–261. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Järvelin, K., Kekäläinen, J.: Discounted Cumulated Gain. In: Encyclopedia of Database Systems, pp. 849–853 (2009)

    Google Scholar 

  11. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In: ICML, pp. 784–791 (2008)

    Google Scholar 

  12. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW Conference, pp. 781–790 (2010)

    Google Scholar 

  13. Robertson, S., Walker, S., Beaulieu, M.: Okapi at Trec-7: Automatic Ad Hoc, Filtering, Vlc, and Interactive Track. In: 7th Text REtrieval Conference, pp. 253–264 (1999)

    Google Scholar 

  14. Sakai, T., Craswell, N., Song, R., Robertson, S., Dou, Z., Lin, C.-Y.: Simple evaluation metrics for diversified search results. In: EVIA 2010, pp. 42–50 (2010)

    Google Scholar 

  15. Sakai, T., Song, R.: Evaluating Diversified Search Results Using Per-intent Graded Relevance. In: ACM SIGIR (2011)

    Google Scholar 

  16. Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting query reformulations for Web search result diversification. In: WWW Conference, pp. 881–890 (2010)

    Google Scholar 

  17. Santos, R.L.T., Macdonald, C., Ounis, I.: Selectively diversifying Web search results. In: ACM CIKM, pp. 1179–1188 (2010)

    Google Scholar 

  18. Santos, R.L.T., Macdonald, C., Ounis, I.: Intent-aware search result diversification. In: ACM SIGIR (2011)

    Google Scholar 

  19. Hemayati, R.T., Meng, W., Yu, C.: Categorizing Search Results Using WordNet and Wikipedia. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 185–197. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Xu, Y., Yin, H.: Novelty and topicality in interactive information retrieval. J. Am. Soc. Inf. Sci. Technol. 59(2), 201–215 (2008)

    Article  Google Scholar 

  21. Zhai, C.: Risk Minimization and Language Modeling in Information Retrieval. PhD thesis, Carnegie Mellon University (2002)

    Google Scholar 

  22. Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: ACM SIGIR, pp. 699–708 (2003)

    Google Scholar 

  23. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW Conference, pp. 22–32 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemayati, R.T., Dehkordi, L.J., Meng, W. (2012). mNIR: Diversifying Search Results Based on a Mixture of Novelty, Intention and Relevance. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, vol 7651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35063-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35063-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35062-7

  • Online ISBN: 978-3-642-35063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics