Abstract
Current search engines do not explicitly take different meanings and usages of user queries into consideration when they rank the search results. As a result, they tend to retrieve results that cover the most popular meanings or usages of the query. Consequently, users who want results that cover a rare meaning or usage of query or results that cover all different meanings/usages may have to go through a large number of results in order to find the desired ones. Another problem with current search engines is that they do not adequately take users’ intention into consideration. In this paper, we introduce a novel result ranking algorithm (mNIR) that explicitly takes result novelty, user intention-based distribution and result relevancy into consideration and mixes them to achieve better result ranking. We analyze how giving different emphasis to the above three aspects would impact the overall ranking of the results. Our approach builds on our previous method for identifying and ranking possible categories of any user query based on the meanings and usages of the terms and phrases within the query. These categories are also used to generate category queries for retrieving results matching different meanings/usages of the original user query. Our experimental results show that the proposed algorithm can outperform state-of-the-art diversification approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: ACM Intl. Conf. on Web Search and Data Mining (2009)
Capannini, G., Nardini, F.M., Perego, R., Silvestri, F.: Efficient diversification of web search results. PVLDB 4(7) (April 2011)
Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: ACM SIGIR, pp. 335–336 (1998)
Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., Wu, S.: Intent-based diversification of web search results: metrics and algorithms. Information Retrieval Journal (2011)
Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: ACM SIGIR, pp. 429–436 (2006)
Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Buttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: ACM SIGIR, pp. 659–666 (2008)
Clough, P., Sanderson, M., Abouammoh, M., Navarro, S., Paramita, M.: Multiple approaches to analysing query diversity. In: ACM SIGIR, pp. 734–735 (2009)
Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW Conference, pp. 381–390 (2009)
Hemayati, R.T., Meng, W., Yu, C.: Identifying and Ranking Possible Semantic and Common Usage Categories of Search Engine Queries. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 254–261. Springer, Heidelberg (2010)
Järvelin, K., Kekäläinen, J.: Discounted Cumulated Gain. In: Encyclopedia of Database Systems, pp. 849–853 (2009)
Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In: ICML, pp. 784–791 (2008)
Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW Conference, pp. 781–790 (2010)
Robertson, S., Walker, S., Beaulieu, M.: Okapi at Trec-7: Automatic Ad Hoc, Filtering, Vlc, and Interactive Track. In: 7th Text REtrieval Conference, pp. 253–264 (1999)
Sakai, T., Craswell, N., Song, R., Robertson, S., Dou, Z., Lin, C.-Y.: Simple evaluation metrics for diversified search results. In: EVIA 2010, pp. 42–50 (2010)
Sakai, T., Song, R.: Evaluating Diversified Search Results Using Per-intent Graded Relevance. In: ACM SIGIR (2011)
Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting query reformulations for Web search result diversification. In: WWW Conference, pp. 881–890 (2010)
Santos, R.L.T., Macdonald, C., Ounis, I.: Selectively diversifying Web search results. In: ACM CIKM, pp. 1179–1188 (2010)
Santos, R.L.T., Macdonald, C., Ounis, I.: Intent-aware search result diversification. In: ACM SIGIR (2011)
Hemayati, R.T., Meng, W., Yu, C.: Categorizing Search Results Using WordNet and Wikipedia. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 185–197. Springer, Heidelberg (2012)
Xu, Y., Yin, H.: Novelty and topicality in interactive information retrieval. J. Am. Soc. Inf. Sci. Technol. 59(2), 201–215 (2008)
Zhai, C.: Risk Minimization and Language Modeling in Information Retrieval. PhD thesis, Carnegie Mellon University (2002)
Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: ACM SIGIR, pp. 699–708 (2003)
Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW Conference, pp. 22–32 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hemayati, R.T., Dehkordi, L.J., Meng, W. (2012). mNIR: Diversifying Search Results Based on a Mixture of Novelty, Intention and Relevance. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, vol 7651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35063-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-35063-4_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35062-7
Online ISBN: 978-3-642-35063-4
eBook Packages: Computer ScienceComputer Science (R0)