Skip to main content

MML Logistic Regression with Translation and Rotation Invariant Priors

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

  • 3623 Accesses

Abstract

Parameters in logistic regression models are commonly estimated by the method of maximum likelihood, while the model structure is selected with stepwise regression and a model selection criterion, such as AIC or BIC. There are two important disadvantages of this approach: (1) maximum likelihood estimates are biased and infinite when the data is linearly separable, and (2) the AIC and BIC model selection criteria are asymptotic in nature and tend to perform well only when the sample size is moderate to large. This paper introduces a novel criterion, based on the Minimum Message Length (MML) principle, for parameter estimation and model selection of logistic regression models. The new criterion is shown to outperform maximum likelihood in terms of parameter estimation, and outperform both AIC and BIC in terms of model selection using both real and artificial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length, 1st edn. Information Science and Statistics. Springer (2005)

    Google Scholar 

  4. Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)

    Article  MATH  Google Scholar 

  5. Wallace, C., Boulton, D.: An invariant Bayes method for point estimation. Classification Society Bulletin 3(3), 11–34 (1975)

    Google Scholar 

  6. Wallace, C.S., Freeman, P.R.: Estimation and inference by compact coding. Journal of the Royal Statistical Society (Series B) 49(3), 240–252 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Dowe, D.L., Wallace, C.S.: Resolving the Neyman-Scott problem by minimum message length. In: Proc. 28th Symposium on the Interface, Sydney, Australia. Computing Science and Statistics, vol. 28, pp. 614–618 (1997)

    Google Scholar 

  8. Metropolis, A.W., Rosenbluth, M.N., Rosenbluth, A.H., Teller, E.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  9. Andrews, D.F., Mallows, C.L.: Scale mixtures of normal distributions. Journal of the Royal Statistical Society (Series B) 36(1), 99–102 (1974)

    MathSciNet  MATH  Google Scholar 

  10. Holmes, C.C., Held, L.: Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analsyis 1(1), 145–168 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gramacy, R.B., Polson, N.G.: Simulation-based regularized logistic regression. Bayesian Analsyis 7(3) (to appear, 2012)

    Google Scholar 

  12. Polson, N.G., Scott, J.G., Windle, J.: Bayesian inference for logistic models using polya-gamma latent variables. arXiv:1205.0310

    Google Scholar 

  13. Polson, N.G., Scott, J.G.: Shrink globally, act locally: Sparse Bayesian regularization and prediction. In: Bayesian Statistics, vol. 9 (2010)

    Google Scholar 

  14. Park, T., Casella, G.: The Bayesian lasso. Journal of the American Statistical Association 103(482), 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. van Toussaint, U., Gori, S., Dose, V.: Invariance priors for Bayesian feed-forward neural networks. Neural Networks 19(10), 1550–1557 (2006)

    Article  MATH  Google Scholar 

  16. Gärtner, B.: Fast and Robust Smallest Enclosing Balls. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999)

    Google Scholar 

  17. Albert, A., Anderson, J.A.: On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1), 1–10 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Gao, S.: A solution to separation and multicollinearity in multiple logistic regression. J. Data Sci. 6(4), 515–531 (2008)

    MathSciNet  Google Scholar 

  20. Bull, S.B., Mak, C., Greenwood, C.M.T.: A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics & Data Analysis 39(1), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society (Series B) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makalic, E., Schmidt, D.F. (2012). MML Logistic Regression with Translation and Rotation Invariant Priors. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics