Skip to main content

A Brain Informatics Approach to Explain the Oblique Effect via Depth Statistics

  • Conference paper
Brain Informatics (BI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7670))

Included in the following conference series:

Abstract

Natural vision systems still outperform artificial vision systems in terms of generalization. Therefore, many researchers turned to investigate biological vision systems in order to reverse engineer them and implement their principles into artificial vision systems. An important approach for developing a theory of vision is to characterize the visual environment in statistical terms, because this may provide objective yard sticks for evaluating natural vision systems using measures such as, for example, the information transmission rates achieved by natural vision systems. Most such studies focused on characterizing natural luminance images. Here we propose to investigate natural luminance images together with corresponding depth images using information-theoretical measures. We do this using a database of natural images and depth images and find that certain oriented filter responses convey more information about relevant depth features than other oriented filters. More specifically, we find that vertical filter responses are much more informative about gap and orientation discontinuities in the depth images than other filters. We show that this is an inherent property of the investigated visual scenes, and it may serve to explain parts of the oblique effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells (1987)

    Google Scholar 

  2. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1), 1193–1216 (2001)

    Article  Google Scholar 

  3. Burton, G.J., Moorhead, I.R.: Color and spatial structure in natural scenes. Applied Optics 26(1), 157–170 (1987)

    Article  Google Scholar 

  4. Zhu, S.C., Mumford, D.: Prior learning and gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1236–1250 (1997)

    Article  Google Scholar 

  5. Van Hateren, J.H., Van Der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society B Biological Sciences 265(1394), 359–366 (1998)

    Article  Google Scholar 

  6. Rothkopf, C.A., Weisswange, T.H., Triesch, J.: Learning independent causes in natural images explains the spacevariant oblique effect. In: IEEE 8th International Conference on Development and Learning, ICDL 2009, pp. 1–6 (June 2009)

    Google Scholar 

  7. Potetz, B., Lee, T.S.: Statistical Correlations Between 2D Images and 3D Structures in Natural Scenes. Journal of Optical Society of America, A 7(20), 1292–1303 (2003)

    Article  Google Scholar 

  8. Yang, Z., Purves, D.: Image/source statistics of surfaces in natural scenes. Network: Computation in Neural Systems 14(3), 371–390 (2003)

    Article  Google Scholar 

  9. Ng, A.Y., Saxena, A., Sun, M.: Make3d: Learning 3d scene structure from a single still image. IEEE Transactions of Pattern Analysis and Machine Intelligence (PAMI) 30(5), 824–840 (2009)

    Google Scholar 

  10. Yokoya, N., Levine, M.D.: Range image segmentation based on differential geometry: a hybrid approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 643–649 (1989)

    Article  Google Scholar 

  11. Hoover, X.J.A., Jean-Baptiste, G.: An experimental comparison of range image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 673–689 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohammed, R.A.A., Schwabe, L. (2012). A Brain Informatics Approach to Explain the Oblique Effect via Depth Statistics. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35139-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35138-9

  • Online ISBN: 978-3-642-35139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics