Abstract
We report some existing work, inspired by analogies between human thought and machine computation, showing that the informational state of a digital computer can be decoded in a similar way to brain decoding. We then discuss some proposed work that would leverage this analogy to shed light on the amount of information that may be missed by the technical limitations of current neuroimaging technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wiener, N.: Cybernetics: Or the Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)
von Neumann, J.: First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993)
Turing, A.: Intelligent machinery. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 3–23. Edinburgh University Press, Edinburgh (1969)
Putnam, H.: Minds and Machines. In: Hook, S. (ed.) Dimensions of Mind, pp. 130–164. Collier Books, New York (1960)
Chomsky, N.: Syntactic Structures. The Hague, Mouton (1957)
Chomsky, N.: A Review of B. F. Skinner’s Verbal Behavior. Language 35, 26–58 (1959)
Pinker, S.: How the Mind Works. Norton and Company (2009)
Zanzotto, F.M., Croce, D.: Reading What Machines “Think”. In: Zhong, N., Li, K., Lu, S., Chen, L. (eds.) BI 2009. LNCS (LNAI), vol. 5819, pp. 159–170. Springer, Heidelberg (2009)
Zanzotto, F.M., Croce, D.: Comparing EEG/ERP-Like and fMRI-Like Techniques for Reading Machine Thoughts. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 133–144. Springer, Heidelberg (2010)
Prezioso, S., Croce, D., Zanzotto, F.M.: Reading what machines ”think”: a challenge for nanotechnology. Journal of Computational and Theoretical Nanoscience 8, 1–6 (2011)
Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)
Murphy, B., Baroni, M., Poesio, M.: EEG responds to conceptual stimuli and corpus semantics. In: Proceedings of EMNLP, pp. 619–627. ACL (2009)
Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M., Lakany, H.: EEG decoding of semantic category reveals distributed representations for single concepts. Brain and Language 117, 12–22 (2011)
Chan, A.M., Halgren, E., Marinkovic, K., Cash, S.S.: Decoding word and category-specific spatiotemporal representations from MEG and EEG. NeuroImage 54, 3028–3039 (2011)
Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A., Salmelin, R., Mitchell, T.: Tracking Neural Coding of Perceptual and Semantic Features of Concrete Nouns. NeuroImage 62, 451–463 (2012)
Montague, R.: English as a formal language. In: Thomason, R. (ed.) Formal Philosophy: Selected Papers of Richard Montague, pp. 188–221. Yale University Press, New Haven (1974)
Plate, T.A.: Distributed Representations and Nested Compositional Structure. PhD thesis (1994)
Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Proceedings of ACL 2008: HLT, pp. 236–244. Association for Computational Linguistics, Columbus (2008)
Jones, M.N., Mewhort, D.J.K.: Representing word meaning and order information in a composite holographic lexicon. Psychological Review 114, 1–37 (2007)
Zanzotto, F.M., Korkontzelos, I., Fallucchi, F., Manandhar, S.: Estimating linear models for compositional distributional semantics. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING (2010)
Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1183–1193. Association for Computational Linguistics, Cambridge (2010)
Guevara, E.: A regression model of adjective-noun compositionality in distributional semantics. In: Proceedings of the 2010 Workshop on GEometrical Models of Natural Language Semantics, pp. 33–37. Association for Computational Linguistics, Uppsala (2010)
McCarthy, D., Carroll, J.: Disambiguating nouns, verbs, and adjectives using automatically acquired selectional preferences. Comput. Linguist. 29, 639–654 (2003)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Harris, Z.: Distributional structure. In: Katz, J.J., Fodor, J.A. (eds.) The Philosophy of Linguistics. Oxford University Press, New York (1964)
Firth, J.R.: Papers in Linguistics. Oxford University Press, Oxford (1957)
Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language and Cognitive Processes VI, 1–28 (1991)
Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instrumentation, and Computers 28, 203–208 (1996)
Pado, S., Lapata, M.: Dependency-based construction of semantic space models. Computational Linguistics 33, 161–199 (2007)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41, 391–407 (1990)
Lin, D., Pantel, P.: DIRT-discovery of inference rules from text. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD 2001), San Francisco, CA (2001)
Pakkenberg, B., Gundersen, H.J.: Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology 384, 312–320 (1997)
Stark, A., Toft, M., Pakkenberg, H., Fabricius, K., Eriksen, N., Pelvig, D., Møller, M., Pakkenberg, B.: The effect of age and gender on the volume and size distribution of neocortical neurons. Neuroscience 150, 121–130 (2007)
Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., Jacob Filho, W., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology 513, 532–541 (2009)
Buxhoeveden, D.P., Casanova, M.F.: The minicolumn hypothesis in neuroscience. Brain: A Journal of Neurology 125, 935–951 (2002)
Mountcastle, V.B.: The columnar organization of the neocortex. Brain: A Journal of Neurology 120, 701–722 (1997)
Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K.M., Williamson, A., Acker, J.D.: Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol. Aging. 25, 377–396 (2004)
Gur, R.C., Turetsky, B.I., Matsui, M., Yan, M., Bilker, W., Hughett, P., Gur, R.E.: Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J. Neurosci. 19, 4065–4072 (1999)
Mahon, B.Z., Anzellotti, S., Schwarzbach, J., Zampini, M., Caramazza, A.: Category-specific organization in the human brain does not require visual experience. Neuron 63, 397–405 (2009)
Hagoort, P.: On Broca, brain, and binding: a new framework. Trends in Cognitive Sciences 9, 416–423 (2005)
Yamasaki, S., Yamasue, H., Abe, O., Suga, M., Yamada, H., Inoue, H., Kuwabara, H., Kawakubo, Y., Yahata, N., Aoki, S., Kano, Y., Kato, N., Kasai, K.: Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol. Psychiatry 68, 1141–1147 (2010)
Alvarado, P., Doerfler, P., Wickel, J.: Axon2 - a visual object recognition system for non-rigid objects. In: IASTED International Conference-Signal Processing, Pattern Recognition and Applications (SPPRA), pp. 235–240. Rhodes, IASTED (2001)
Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann (1993)
John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers, pp. 338–345 (1995)
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, Chicago (1999)
Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38, 39–41 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dell’Arciprete, L., Murphy, B., Zanzotto, F.M. (2012). Parallels between Machine and Brain Decoding. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-35139-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35138-9
Online ISBN: 978-3-642-35139-6
eBook Packages: Computer ScienceComputer Science (R0)