Abstract
The high dimensional nature of EEG data due to large electrode numbers and long task periods is one of the main challenges of studying EEG. Evolutionary alternatives to conventional dimension reduction methods exhibit the advantage of not requiring the entire recording sessions for operation. Particle Swarm Optimization (PSO) is an Evolutionary method that achieves performance through evaluation of several generations of possible solutions. This study investigates the feasibility of a 2 layer PSO structure for synchronous reduction of both electrode and task period dimensions using 4 motor imagery EEG data. The results indicate the potential of the proposed PSO paradigm for dimension reduction with insignificant losses in classification and the practical uses in subject transfer applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Dimension Reduction in EEG Data using Particle Swarm Optimization. In: IEEE Congress on computational Intelligence, CEC 2012 (2012)
Tov, E.Y., Inbar, G.F.: Feature selection for the classification of movements from single movement-related potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering 10(3), 170–177 (2002)
Dias, N.S., Jacinto, L.R., Mendes, P.M., Correia, J.H.: Feature Down Selection in Brain Computer Interface. In: Proceeding of the 4th International IEEE EMBS Conference on Neural Engineering, pp. 323–326 (2009)
Largo, R., Munteanu, C., Rosa, A.: CAP Event Detection by Wavelets and GA Tuning. In: WISP 2005, pp. 44–48 (2005)
Zhang, X., Wang, X.: A genetic algorithm based time-Frequency Approach to a Movement Prediction task. In: Proceeding of the 7th World Congress on Intelligent Control and Automation, pp. 1032–1036 (2008)
Palaniappan, R., Raveendran, P.: Genetic Algorithm to select features for Fuzzy ARTMAP classification of evoked EEG, pp. 53-56 (2002)
Jin, J., Wang, X., Zhang, J.: Optimal Selection of EEG Electrodes via DPSO Algorithm. In: Proceeding of the 7th World Congress on Intelligent Control and Automation, pp. 5095–5099 (2008)
Hasan, B.A.S., Gan, J.Q., Zhang, Q.: Multi-Objective Evolutionary Methods for channel selection in brain Computer interface: Some Preliminary Experimental Results. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2010)
Hasan, B.A.S., Gan, J.Q.: Multi-Objective Particle Swarm Optimization for Channel Selection in Brain Computer Interface. In: The UK Workshop on Computational Intelligence (UKCI 2009), Nottingham, UK (2009)
Moubayed, N.A., Hasan, B.A.S., Gan, J.Q., Petrovski, A., McCall, J.: Binary-SDMOPSO and its application in channel selection for brain computer interfaces. In: 2010 UK Workshop on Computational Intelligence (UKCI), pp. 1–6 (2010)
Khushaba, R.N., Al-Ani, A., Al-Jumaily, A., Nguyen, H.T.: A Hybrid Nonlinear-Discriminant Analysis Feature Projection Technique. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 544–550. Springer, Heidelberg (2008)
Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Evolutionary feature selection and electrode reduction for EEG classification. In: IEEE Congress on Computational Intelligence, CEC 2012 (2012)
Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Adapting Subject-Independent Task-Specific EEG Feature Masks using PSO. In: IEEE Congress on computational Intelligence, CEC 2012 (2012)
Hwang, Y.K., Chen, P.C.: A Heuristic and Complete Planner for the Classical Mover’s Problem. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 729–736. IEEE (1995)
Atyabi, A., Fitzgibbon, S.P., Powers, D.M.W.: Multiplying the Mileage of Your Dataset with Subwindowing. In: Hu, B., Liu, J., Chen, L., Zhong, N. (eds.) BI 2011. LNCS, vol. 6889, pp. 173–184. Springer, Heidelberg (2011)
Atyabi, A., Fitzgibbon, S.P., Powers, D.M.W.: Biasing the Overlapping and Non-Overlapping Sub-Windows of EEG recording. In: IEEE International Joint Conference on Neural Networks, IJCNN 2012 (2012)
Atyabi, A., Powers, D.M.W.: The impact of Segmentation and Replication on Non-Overlapping windows: An EEG study. In: The Second International Conference on Information Science and Technology, ICIST 2012, China (2012)
Blankertz, B., Müller, K.-R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., del R. Millán, J., Schröder, M., Birbaumer, N.: The BCI competition III:Validating alternative approaches to actual BCI problems. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)
Powers, D.M.W.: Recall and Precision versus the Bookmaker. In: International Conference on Cognitive Science (ICSC 2003), pp. 529–534 (2003)
Powers, D.M.W.: Evaluation: From Precision, Recall and F-Measure to ROC. Informedness, Markedness & Correlation. Journal of Machine Learning Technologies 2(1), 37–63 (2011)
Powers, D.M.W.: The Problem of Kappa. In: 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon France (April 2012)
Chih-Chung, C., Chih-Jen, L.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27:1–27:27 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Atyabi, A., Luerssen, M.H., Fitzgibbon, S.P., Powers, D.M.W. (2012). The Impact of PSO Based Dimension Reduction on EEG Classification. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-35139-6_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35138-9
Online ISBN: 978-3-642-35139-6
eBook Packages: Computer ScienceComputer Science (R0)